NEET

NATIONAL TESTING AGENCY

Physics

Volume - 1 || Part - I

NEET - UG

PHYSICS - CLASS - $12^{\text {th }}$

S.NO	CONTENT	Page No.
PHYSICS PART - I		
1.	Alternating Current	$\mathbf{1}$
2.	Current Electricity	$\mathbf{2 8}$
3.	Dual Nature of Radiation and Matter	$\mathbf{6 9}$
4.	Electric Charges and Fields	$\mathbf{1 0 4}$
5.	Electromagnetic Induction	$\mathbf{1 4 5}$

Dear Aspirant,
 Thank you for making the right decision by choosing ToppersNotes.

To use the QR codes in the book, Please follow the below steps :-

To install the app, scan the QR code with your mobile phone camera or Google Lens

To Login enter your phone number

ToppersNotes Exam Prepration app

Download the app from Google play store

Choose your exam

For any help,

write us at hello@toppersnotes.com or whatsapp on $₫ 7665641122$.

CHAPTER

1 Alternating Current

CHAPTER OUTLINE

- Introduction
- Power in AC Circuits
- Impedance
- Power Factor
- Transformers
- Sinusoidal Waveform
- Simple Circuits
- Mixed AC Circuit
- Wattless Current
- Choking Coil

INTRODUCTION

- The bulk of the world's electrical power is generated, distributed, and consumed as sinusoidal alternating current (AC) and voltage. It is utilised in both domestic and industrial settings.
- AC has a number of advantages versus DC. The primary advantage of alternating current (AC) is that it can be changed into any form, whereas direct current (DC) cannot.
- A transformer allows voltage to be stepped up or down for transmission purposes. Transmission of high voltage (measured in KV) suggests that less current is needed to generate the same amount of power. Less current allows for the use of thinner cables for gearbox.
- In this chapter, we will look at a sinusoidal signal and its underlying mathematical equation. We will explore and analyse circuits in which currents and voltages vary with time.
- The phasor analysis techniques will be utilised to examine electronic circuits under sinusoidal steady-state operating circumstances. The chapter will conclude with single-phase power.

SINUSOIDAL WAVEFORMS

- Unlike DC, AC flows in one direction first, then the other direction. A sine (or sinusoidal) waveform is the most frequent.
- When describing an AC signal, the current and voltage must be expressed in terms of maximum or peak values, peak-to-peak values, effective values, average values, or instantaneous values. Each of these figures represents a different quantity of current or voltage and has a distinct significance.
$V(\mathrm{t})=\mathrm{V}_{0} \sin \omega \mathrm{t}$
- Where V_{0} is the peak voltage, $\omega=2 \pi f$ is the angular frequency expressed in radian per second (rad/s), f is the frequency expressed in Hertz, t is time expressed in second (s).

Figure: Sinusoidal Waveform

SOME OTHER WAVE FORM FOR I-V

Instantaneous Value

- An AC signal's instantaneous value is the value of voltage or current at a specific point in time. If the precise instant is the time in the cycle when the polarity of the voltage changes, the value may be zero.
- It could also be the same as the peak value if the chosen instant is the point in the cycle when the voltage or current stops increasing and begins falling. Between zero and the peak value, there exists an endless number of instantaneous values.

Average Value

- Average value of a function, from t_{1} to t_{2}, is defined as.

We can find the value of $\int_{\mathrm{t}_{1}}^{\mathrm{t}_{2}} f d t$ graphically if the graph is linear. It is the area of f-t graph from $\mathrm{t}_{2}-\mathrm{t}_{1}$

where I is the instantaneous value of the current.

For Sinusoidal Variation of Current and Voltages

Case I: Average value over complete cycle.

$$
\frac{\int_{0}^{t} i_{0} \sin (\omega \tau+\theta) d t}{\int_{0}^{t} d t}
$$

Similarly $\mathrm{V}_{\mathrm{av}}=0$

Case II: Average value over half cycle

$$
\mathrm{I}_{\text {avg }}=\frac{\int_{0}^{\mathrm{t} / 2} \mathrm{i}_{0} \sin (\omega \tau+\theta) \mathrm{dt}}{\int_{0}^{\mathrm{t} / 2} \mathrm{dt}}=\frac{2 \mathrm{i}_{0}}{\pi}
$$

Similarly
$V_{\text {avg }}=\frac{2 \mathrm{i}_{0}}{\pi}$

Effective Value (RMS Value)

- This is the value of an alternating current signal that has the same effect on a resistance that a comparable value of direct voltage or current does on the same resistance. To a high degree of accuracy, the effective value of a sine wave of current can be computed by taking equally spaced instantaneous values of current along the curve and calculating the square root of the average of the squared values. As a result, effective value is also known as RMS value.
- Root mean square value of a function, from, t_{1} to t_{2} is defined as

The magnitude of $I_{\text {rms }}$ is given by
$I_{\text {rms }}^{2}=\frac{\int_{0}^{T} I^{2} d t}{\int_{0}^{T} d t}=\frac{\int_{0}^{T} I_{0}^{2} \sin ^{2}(\omega \tau) d t}{\int_{0}^{T} d t}=\frac{I_{0}^{2}}{2}$
$I_{\text {eff }}=I_{\text {rms }}=\frac{I_{0}}{\sqrt{2}}=0.707 I_{0}$

Where I_{0} is the peak value of the current. Similarly
$V_{\text {eff }}$ or $V_{r m s}=\frac{V_{0}}{\sqrt{2}}=0.707 E_{0} A$

Difference between Sine and Cosine Representation of AC Signal

- The sine and cosine functions are essentially the same, but with a 90° phase difference. For instance, sin $\omega t=\cos \left(\omega t-90^{\circ}\right)$. Any sinusoidal function's argument can have multiples of 360° added or deleted without altering the function's value. Consider the following to see what I mean.
$V_{1}=V_{P 1} \cos \left(10 t+20^{\circ}\right)=V_{P 1} \sin \left(10 t+90^{\circ}+20^{\circ}\right)$

$$
=V_{P 1} \sin \left(10 t+110^{\circ}\right)
$$

$$
\begin{equation*}
\text { Leads } V_{2}=V_{P 2} \sin \left(10 t-40^{\circ}\right) \tag{ii}
\end{equation*}
$$

by 150° It is also correct to say that V_{1} lags V_{2} by 210° since V_{1} may be written as

$$
\begin{equation*}
V_{1}=V_{P 1} \sin \left(10 t-250^{\circ}\right) V \tag{iii}
\end{equation*}
$$

Figure: Representation of voltage as sine and cosine function

SOME IMPORTANT VALUES

Nature of wave form	Wave form	r.m.s. value	Average value	Form factor $R_{f}=\frac{\text { r.m.s. value }}{\text { Average value }}$	Peak factor $R_{p}=\frac{\text { Peak value }}{\text { r.m.s. value }}$
Sinusoidal		$\frac{i_{0}}{\sqrt{2}}$	$\frac{2}{\pi} \mathrm{i}_{0}$	$\frac{\pi}{2 \sqrt{2}}=1.11$	$\sqrt{2}=1.41$
Half wave rectified		$\frac{i_{0}}{2}$	$\frac{i_{0}}{\pi}$	$\frac{\pi}{2}=1.57$	2
Full wave rectified		$\frac{i_{0}}{\sqrt{2}}$	$\frac{2 i_{0}}{\pi}$	$\frac{\pi}{2 \sqrt{2}}$	$\sqrt{2}$
Square or Rectangular		i_{0}	i_{0}	1	1

POWER IN AC CIRCUITS

Average power in alternating current circuit over time t is defined as,

where V and i are the instantaneous values of voltage and current respectively.
Let
$V=V_{0} \sin \omega t$;
$i=i_{0} \sin (\omega t-\phi)$
Average power over a cycle

$=\frac{v_{0} i_{0} \int_{0}^{T}\left(\sin ^{2} \omega t \cos \phi-\frac{1}{2} \sin ^{2} \omega t \sin \phi\right) d t}{T}$
$=\frac{1}{2} \mathrm{~V}_{0} \mathrm{i}_{0} \cos \phi=\mathrm{V}_{\mathrm{rms}} \mathrm{i}_{\mathrm{rms}} \cos \phi$

The term $\cos \phi$ is known as power factor.

If current precedes voltage, it is considered to be leading; if current lags voltage, it is said to be trailing. Thus, a power factor of 0.5 trailing indicates that current is 600 times slower than voltage.
(as $\cos ^{-1} 0.5=60^{\circ}$). The apparent power is given by the product of $\mathrm{V}_{\text {rms }}$ and $I_{\text {rms }}$, while the true power is produced by multiplying the apparent power by the power factor $\cos \phi$. As a result, apparent power $=\mathrm{V}_{\mathrm{rms}} * \mathrm{I}_{\mathrm{rms}}$, and true power $=$ apparent power * power factor.
For $\phi=0^{0}$, the current and voltage are in phase. The power is maximum $\mathbf{V}_{\text {rms }} \boldsymbol{*}_{\text {rms }}$.
For $\phi=90^{\circ}$ the power is zero.
The current is then specified as wattless. This is the case when the resistance in the circuits is zero. The circuit is either entirely inductive or entirely capacitive. The situation is comparable to that of a frictionless pendulum, in which gravity does no work on the pendulum cycle.
We'll talk about power and power factor more later, once we define impedance and its attributes.

SIMPLE AC CIRCUITS

Purely Resistive Load

Writing KVL along the circuit (see Fig. 23.3),

$$
V_{s}-I R=0
$$

Or
$I=\frac{V_{s}}{R}=\frac{V_{m} \sin \omega t}{R}=I_{m} \sin \omega t$

We see that the phase difference between potential differences across resistance, V_{R} and I_{R} is 0 .

Figure: AC voltage applied to resistive load

Purely Capacitive

Writing KVL along the circuit shown in Fig. 23.4
And current in the circuit is
$v_{s}-\frac{q}{c}=0$
$I=\frac{d q}{d t}=\frac{d(c v)}{d t}=\frac{d\left(\mathrm{cv}_{\mathrm{m}} \sin \omega \mathrm{t}\right)}{\mathrm{dt}}=\mathrm{cv}_{\mathrm{m}} \omega \sin \omega \mathrm{t}=\frac{\mathrm{V}_{\mathrm{m}}}{1 / \omega \mathrm{C}} \cos \omega \mathrm{t}$

Figure: AC voltage applied to capacitive load
$=\frac{V_{m}}{X_{c}} \cos \omega t=I_{m} \cos \omega t$
where
$\mathrm{X}_{\mathrm{C}}=\frac{1}{\omega \mathrm{C}}$
and is called capacitive reactance. Its unit is Ω The graphs of current vs time and voltage versus time show that current reaches its maximum value $\mathrm{T} / 4$ before voltage reaches its maximum value.
Corresponding to $\mathrm{T} / 4$ phase difference.
$=\omega \mathrm{t}=\frac{2 \pi}{\mathrm{~T}} \frac{\mathrm{~T}}{4}=\frac{\pi}{2}$
I leads V by diagrammatically (phase diagram) represented as

Figure:
Since $\phi=90^{\circ},\langle P\rangle=V_{\text {rms }} I_{\text {rms }} \cos \phi=0$
The current leads the voltage by $\pi / 2$ in a capacitive circuit
or $\quad i \prod_{90^{\circ}}$

Pure Inductive Circuit

Writing KVL along circuit, ;

$$
\begin{aligned}
& V_{s}-L \frac{d i}{d t}=0 ; L \frac{d i}{d t}=V_{m} \sin \omega t ; \int L d i=\int V_{m} \sin \omega t d t \\
& i=-\frac{V_{m}}{\omega L} \cos \omega t+C ;<i>=0 ; C=0 ; \\
& \therefore i=-\frac{V_{m}}{\omega L} \cos \omega t I_{m}=\frac{V_{m}}{X_{L}} \\
& V_{s}=V_{m} \sin \omega t \\
& i
\end{aligned}
$$

Figure: AC voltage applied to inductive load The graphs of current versus time and voltage versus time show that voltage reaches its maximum value $\mathrm{T} / 4$ before current reaches its maximum value. Corresponding to $\mathrm{T} / 4$, the phase difference
$\omega t=\frac{2 \pi}{\mathrm{~T}} \frac{\mathrm{~T}}{4}=\frac{2 \pi}{\mathrm{~T}}=\frac{\pi}{2}$

Figure: Variation of current and voltage with respect to time

I_{L} lags behind V_{L} by $\pi / 2$ since
$\phi=90^{\circ},\langle\mathrm{P}\rangle=\mathrm{V}_{\mathrm{rms}} \mathrm{r}_{\mathrm{rms}} \cos \phi=0$
The current lags voltage by $\pi / 2$ in a purely inductive circuit.

Figure: AC voltage applied to purely inductive circuit

IMPEDANCE

as we know inductive reactance $X_{L}=\omega L$ and capacitance reactance $X_{C}=1 / \omega C$
the function of an effective resistance in a purely inductive and capacitive circuit. The effective resistance in the series RLC circuit is described as
$\mathrm{Z}=\sqrt{\mathrm{R}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}$
The graphic in Fig. 23.9 represents the relationship between Z, X_{L}, and X_{C}.
The link between Z, X_{L}, and X_{C} is depicted in the diagram below.

The impedance is measured in SI units. The current can be expressed in terms of Z as $\mathrm{I}(\mathrm{t})$.

$$
=\frac{V_{0}}{Z} \sin (\omega t-\phi)
$$

Notice that the impedance Z also depends on the angular frequency ω, as do X_{L} and X_{c}.

Figure: Impedance Triangle
We can easily derive the limit for a basic circuit (with only one element) using the previous formulae for phase ϕ and Z.
The following circuits would be simple to understand because they are simply a superposition of individual phasor diagrams.

MIXED AC CIRCUITS

LR Circuit

If V_{R}, V_{L}, and V_{C} are the RMS voltage across are R, L and C the source respectively. Then,

$$
V_{S}=\sqrt{V_{R}^{2}+V_{L}^{2}}=I_{2} \sqrt{R^{2}+X_{L}^{2}}
$$

Where $I_{s}=r . m . s$ value of current source
The overall resistance to the current is known as impedance, and it is indicated by Z .
$Z=\frac{V_{S}}{I_{S}}=\sqrt{R^{2}+X_{L}^{2}}=\sqrt{R^{2}+\omega^{2} L^{2}}$

(b)

Figure: (a) AC voltage applied to LR circuit (b) Phasor diagram of voltage drops across R and L The phase angel ϕ by which the applied voltage leads the current is $\phi=\tan ^{-1}\left(\frac{X_{L}}{R}\right)=\tan ^{-1}\left(\frac{\omega L}{R}\right)$

RC Circuits

Figure: (a) AC voltage applied to RC circuit (b) Phasor diagram of voltage drops across R and C
If $\mathrm{V}_{\mathrm{s}}, \mathrm{V}_{\mathrm{R}}$ and V_{C} are RMS voltages across a source, resistance and capacitor respectively
$V_{S}=\sqrt{V_{R}^{2}+V_{C}^{2}}=I_{S}=\sqrt{R^{2}+X_{C}^{2}}$
impedance of circuit
$\mathrm{Z}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{I}_{\mathrm{S}}}=\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{C}}^{2}}=\sqrt{\mathrm{R}^{2}+\frac{1}{\omega^{2} \mathrm{C}^{2}}}$
V_{s} leads is by $\phi=\tan ^{-1}\left(\frac{X_{c}}{R}\right)=\tan ^{-1}\left(\frac{1}{\omega C R}\right)$
The current leads the applied voltage by angel.

LC Circuits

From the phasor diagram
$V=I\left|\left(X_{L}-X_{C}\right)\right|=I Z ; \phi=90^{\circ}$

(a)

RLC Circuits

For LCR series circuits

$$
V_{S}=\sqrt{V_{R}^{2}+\left(V_{L}-V_{c}\right)^{2}}
$$

Impedance of circuits

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}
$$

V_{s} leads I_{s} by

$$
\phi=\tan ^{-1}\left(\frac{X_{L}-X_{C}}{R}\right)=\tan ^{-1}\left(\frac{\omega L-\frac{1}{\omega C}}{R}\right)
$$

Power in LCR circuit $=$
$=V_{\text {rms }} I_{\text {rms }} \cos f=V_{r m s} I_{r m s} \frac{R}{Z}=V_{R} I_{r m s}$

(b)

Figure: (a) AC voltage applied to LCR circuit, (b) Phasor diagram of voltage drops across L, C and R and
Where ϕ is called the power factor of the LCR circuit.

Resonance in RLC Circuits

At a particular angular frequency ω_{0} of the source, when $X_{L}=X_{c}$ or
$\omega_{0} \mathrm{~L}=\frac{1}{\omega_{0} \mathrm{C}}$

The circuit's impedance becomes minimum and equal to R, and so the current is maximum. The circuit is then considered to be in resonance. The resonance angular frequency ω_{0} and frequency V_{0} are given by

$$
\omega_{0}=\frac{1}{\sqrt{2}} \cdot v_{0}=\frac{1}{2 \pi \sqrt{L C}}
$$

Figure 23.16 depicts the fluctuation of RMS current with frequency of applied voltage. If the applied voltage has many frequency components, the current will be high for the components with frequency V_{0}. An LCR series circuit's Q factor is given by
$Q=\frac{\omega_{0} L}{R}$
A direct current flows uniformly over the conductor's cross-section. An alternating current, on the other hand, runs primarily along the conductor's surface. The skin effect is the name given to this phenomena. The reason for this is that when alternating current travels through a conductor, the flux change in the inner region of the conductor is greater.

Figure:
We use the previously obtained results to analyse this circuit. The resistor's current is
$I_{R}(t)=\frac{V(t)}{R}=\frac{V_{0}}{R}=\sin \omega t=I_{R 0} \sin \omega t$
Where

$$
I_{R o}=V_{0} / R
$$

The voltage across the inductor is
$\mathrm{V}_{\mathrm{L}}(\mathrm{t})=\mathrm{V}(\mathrm{t})=\mathrm{V}_{0} \sin \omega \mathrm{t}=\mathrm{L} \frac{\mathrm{d} \mathrm{L}_{\mathrm{L}}}{\mathrm{dt}}$
which gives

$$
\begin{equation*}
I_{L}(t)=\int_{0}^{t} \frac{V_{0}}{L} \sin \omega t^{\prime} d t^{\prime}=\frac{V_{0}}{\omega L} \cos \omega t=\frac{V_{0}}{X_{L}} \sin \left(\omega t-\frac{\pi}{2}\right)=I_{L 0} \sin \left(\omega t-\frac{\pi}{2}\right) \tag{iii}
\end{equation*}
$$

where $I_{L 0}=V_{0} / X_{L}$ and $X_{L}=\omega L$ is the inductive reactance.
Similarly, the voltage across the capacitor is,
$\mathrm{V}_{\mathrm{C}}(\mathrm{t})=\mathrm{V}_{0} \sin \omega \mathrm{t}=\mathrm{Q}(\mathrm{t}) / \mathrm{c}$
which implies
$I_{C}(t)=\frac{d Q}{d t}=\omega C V_{0} \cos \omega t=\frac{V_{0}}{X_{c}} \sin \left(\omega t+\frac{\pi}{2}\right)=I_{C 0} \sin \left(\omega t+\frac{\pi}{2}\right)$
where
$\mathrm{I}_{\mathrm{co}}=\mathrm{V}_{0} / \mathrm{X}_{\mathrm{C}}$ and $\mathrm{X}_{\mathrm{c}}=1 / \omega \mathrm{L}$
X_{c} is the capacitive reactance.
The total current is simply the sum of the three currents using Kirchhoff's junction rule.
$I(t)=I_{R}(t)+I_{L}(t)+I_{C}(t)=I_{R 0} \sin \omega t+I_{L O} \sin \left(\omega t-\frac{\pi}{2}\right)+I_{C 0} \sin \left(\omega t+\frac{\pi}{2}\right)$
The current can be represented with the phasor diagram shown in Fig. 23.20

Figure: Phase difference between current and voltage

From the phasor diagram, we see that.
$\vec{l}_{0}=\vec{l}_{\mathrm{RO}}+\overrightarrow{\mathrm{I}}_{\mathrm{LO}}+\overrightarrow{\mathrm{I}}_{\mathrm{CO}}$
And the maximum amplitude of the total current, I_{0}, can be obtained as
$\overrightarrow{\mathrm{I}}_{\mathrm{O}}=\left|\vec{I}_{\mathrm{O}}\right|=\left|\overrightarrow{\mathrm{r}}_{\mathrm{RO}}+\overrightarrow{\mathrm{I}}_{\mathrm{LO}}+\overrightarrow{\mathrm{I}}_{\mathrm{CO}}\right|=\sqrt{\mathrm{I}_{\mathrm{RO}}^{2}+\left(\mathrm{I}_{\mathrm{CO}}-\mathrm{I}_{\mathrm{LO}}\right)^{2}}$
$=V_{0} \sqrt{\frac{1}{R^{2}}+\left(\omega C-\frac{1}{\omega L}\right)^{2}}=V_{0} \sqrt{\frac{1}{R^{2}}+\left(\frac{1}{X_{C}}-\frac{1}{X_{L}}\right)^{2}}$
...(vii)
Note however, since $I_{R}(t), I_{C}(t)$ and $I_{L}(t)$ are not in phase with one another, I_{0} is not equal to the sum of the maximum amplitudes of the three currents: of the circuit is given by:
$\mathrm{I}_{\mathrm{o}} \neq \mathrm{I}_{\mathrm{Ro}}+\mathrm{I}_{\mathrm{Lo}}+\mathrm{I}_{\mathrm{Co}}$

With $\mathrm{I}_{0}=\mathrm{V}_{0} / \mathrm{Z}$, the (inverse) impedance
$\frac{1}{Z}=\sqrt{\frac{1}{R^{2}}+\left(\omega C-\frac{1}{\omega L}\right)^{2}}=\sqrt{\frac{1}{R^{2}}+\left(\frac{1}{X_{C}}-\frac{1}{X_{L}}\right)^{2}} .$.
The relationship between $Z, R X_{L}$ and X_{C} is shown in Fig. 23.21 which shows a relationship between $Z, R X_{L}$ and X_{C} in a parallel RLC circuit.

Figure: Impedance triangle
from phasor diagram we see that phase can be obtain as
$\tan \phi=\left(\frac{I_{c 0}-I_{L 0}}{I_{R 0}}\right)=\frac{\frac{V_{0}}{X_{C}}-\frac{V_{0}}{X_{L}}}{\frac{V_{0}}{R}}=R\left(\frac{V_{0}}{X_{c}}-\frac{V_{0}}{X_{L}}\right)=R\left(\omega t-\frac{\pi}{2}\right)$
The resonance condition for the parallel RLC circuit is given by $\phi=0$, which implies:
$\frac{1}{X_{c}}=\frac{1}{X_{L}}$

The resonant frequency is:
$\omega_{0}=\frac{1}{\sqrt{\text { LC }}}$
which is the same as the series RLC circuit. We can see from Eq. (xii) that $1 / Z$ is smallest (or Z is maximal) at resonance. The current in the inductor perfectly cancels out the current in the capacitor, therefore the overall current in the circuit achieves a minimum and equals the current in the resistor:
$\mathrm{I}_{0}=\frac{\mathrm{V}_{0}}{\mathrm{R}}$
As in the series RLC circuit, power is wasted solely through the resistor. The average power is

$$
\begin{equation*}
\langle\mathrm{P}(\mathrm{t})\rangle=\left\langle\mathrm{I}_{\mathrm{R}}(\mathrm{t}) \mathrm{V}(\mathrm{t})\right\rangle=\left\langle\mathrm{l}_{\mathrm{R}}^{2}(\mathrm{t}) \mathrm{R}\right\rangle=\frac{\mathrm{V}_{0}^{2}}{\mathrm{R}}\left\langle\sin ^{2} \omega \mathrm{t}\right\rangle=\frac{\mathrm{V}_{0}^{2}}{2 \mathrm{R}}=\frac{\mathrm{V}_{0}^{2}}{2 \mathrm{Z}}=\left(\frac{\mathrm{Z}}{\mathrm{R}}\right) \tag{xiv}
\end{equation*}
$$

Thus, the power factor in this case is
$=\frac{\langle P(t)\rangle}{V_{0}^{2} / 2 Z}=\frac{Z}{R}=\frac{1}{\sqrt{1+\left(R \omega C-\frac{R}{\omega L}\right)^{2}}} \cos \phi$
In this situation, the current flows equally via each resistor. To determine the current, calculate the equivalent resistor and divide the voltage by the equivalent resistance.

Series Resonant Circuit	Parallel Resonant Circuit
$X_{L}=X_{C}$	$\frac{1}{X_{L}}=\frac{1}{X_{c}}$
$v_{r}=\frac{1}{2 \pi \sqrt{L C}}$	$v_{r}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}}$
$Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$	$\frac{1}{Z}=\sqrt{\frac{1}{R^{2}}+\left(C \omega-\frac{1}{L \omega}\right)^{2}}$

MORE ON POWER FACTOR

(a) The power factor is the factor present in the relationship for average power of an alternating current circuit.
So,
$\cos \phi=\frac{\mathrm{P}_{\mathrm{ac}}}{\mathrm{E}_{\mathrm{rms} \text { rms }}}=\frac{\mathrm{P}_{\mathrm{avg}}}{\mathrm{p}_{\mathrm{v}}}$
Thus, ratio of average power and virtual power in the circuit is equal to power factor.
(b) Power factor is also equivalent to the ac circuit's resistance to impedance ratio.
Thus,
$\cos \phi=\frac{\mathrm{R}}{\mathrm{Z}}$
(c) Power factor is determined by the type of components utilised in the circuit.
(d) If a pure resistor is connected in the alternating current circuit, then

$$
\phi=0, \cos \phi=1 ; \quad p_{a v}=\frac{\mathrm{E}_{0} \mathrm{l}_{0}}{2}=\frac{\mathrm{E}_{0}^{2}}{2 \mathrm{R}}=\mathrm{E}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}}
$$

Figure:
Thus, the power loss is maximum and electrical energy is converted in the form of heat.
(e) If a pure inductor or capacitor are connected in the ac circuit, then
$\phi=90^{\circ}, \cos \phi=0 \therefore \mathrm{P}_{\mathrm{av}}=0$ (minimum)
Thus is no loss of power.
(f) If a resistor and an inductor or a capacitor are connected in an ac circuit, then $\phi \neq 0$ or $\phi \neq 90^{\circ}$
Thus ϕ is in between $0^{\circ} \& 90^{\circ}$
(g) If the components L, C and R are connected in series in a circuit, then
$\tan \phi=\frac{X}{R}=\frac{(\omega L-1 / \omega C)}{R}$ and ;
$\cos \phi=\frac{R}{Z}=\frac{R}{\left[R^{2}(\omega L-1 / \omega C)^{2}\right]^{1 / 2}}$
Power factor
$\cos \phi=\frac{\mathrm{R}}{\mathrm{Z}}$
(h) Power factor is a unit-less quantity.
(i) If the circuit simply has an inductance coil, there will be no power loss and energy will be stored in the magnetic field.
(j) If a capacitor is just connected in the circuit, no power is lost and energy is stored in the electrostatic field.
(k) An inductor and a capacitor do have some resistance. As a result, there is always some loss of power.
(I) The power factor is one in the resonance condition.

WATTLESS CURRENT

(a) Wattless current is the component of current whose contribution to average power is zero.
(b) The average level of power is zero because the average of the second component of instantaneous power over the course of a whole cycle is zero.
$E_{0} \sin \omega t\left(I_{0} \sin \phi\right) \sin (\omega t-\pi / 2)=0$
(c) The current component connected with this section is known as Wattless current. As a result, the current $\left(I_{0} \sin \phi\right) \sin (\omega t-\pi / 2)$ is a wattless current whose amplitude is $I_{0} \sin \phi$.
(d) If RMS value of current in the circuit is I_{rms} then the RMS value of a wattless current will be $I_{\text {rms' }} \sin \phi$ A wattless current lags or
leads the e.m.f. by an angle $\pi / 2$ RMS value of wattless current:
$I_{r m s} \sin \phi=\frac{I_{0}}{\sqrt{2}} \sin \phi ;=\frac{I_{0}}{\sqrt{2}} \frac{X}{Z}$. Since $\sin \phi=\frac{X}{Z}$

Figure:
Since, $\sin \phi=\frac{X}{Z}$ where is the resultant reactance of the circuit.

TRANSFORMERS

- A transformer is a device that converts a low alternating voltage at a higher current to a high alternating voltage at a lower current and vice versa. A transformer, in other words, is an electrical device that increases or decreases alternating voltage.

Types of Transformers

Figure:
(a) Step-up transformers: A step-up transformer is a transformer that converts a low alternating voltage at a higher current into a high alternating voltage at a lower current.
(a) Step-down transformers: A step-down transformer is a transformer that converts a high alternating voltage at a lower current to a low alternating voltage at a higher current.

Principle: A transformer operates on the mutual induction principle. When a changing current runs through a neighbouring coil, an e.m.f. is induced.
Construction: It is made up of two coils of insulated wire twisted on the same iron core. The primary (A) winding or coil is the one connected to the alternating current input, while the secondary (S) winding or coil is the one providing output.
Theory: An alternating current passes through the primary coil when an alternating source of e.m.f. E_{p} is attached to it. An alternating magnetic flux causes an alternating e.m.f. in the secondary coil E_{s}) due to the flow of alternating current in the main coil. Let N_{p} and N_{s} denote the number of turns in the primary and secondary coils. The iron core is capable of linking the entire magnetic flux produced by the primary coil's turns with the secondary coil.
According to Faraday's law of electromagnetic induction, the induced e.m.f. in the primary coil,
$E_{p}=-N_{p} \frac{d \phi}{d t}$
The induced e.m.f in the secondary coil.
$E_{s}=-N_{s} \frac{d \phi}{d t}$
Dividing (ii) by (i), we get ;
$\frac{E_{s}}{E_{p}}=\frac{N_{s}}{N_{p}}$;
Where
$\frac{N_{s}}{N_{p}}=K$
the transformation ratio or ratio.
Then,
$\frac{E_{s}}{E_{p}}=\frac{N_{s}}{N_{p}}=K$
$K<1$ for step down transformer. In this case, N_{s} $<N_{p}$ and $E_{s}<E_{p}$ i.e. E_{p}, and
output alternating voltage < input alternating voltage.
$\mathrm{k}>1$ for step up transformer. In this case, $\mathrm{N}_{\mathrm{s}}>$ N_{p} and $E_{s}>E_{p}$ i.e., output alternating voltage is greater than the input alternating voltage.

For an ideal transformer (in which no energy losses),
output power = input power
Let I_{s} and I_{p} be the current in the primary and secondary coil respectively.
Then output power $=\mathrm{E}_{\mathrm{s}} \mathrm{I}_{\mathrm{s}}$
input power $=E_{p} l_{p}$
from equation (iii)

$$
E_{p}=E_{s} \text { or } \frac{E_{s}}{E_{p}}=\frac{I_{p}}{I_{s}} \text {; }
$$

or; n general,
$\mathrm{E} \propto \frac{1}{\text { । }}$

Voltage rises as current falls for the same power transfer and vice versa. As a result, whatever gains in the voltage ratio are lost in the current ratio, and vice versa. As a result, a step-up transformer increases alternating voltage by decreasing alternating current, whereas a stepdown transformer decreases alternating voltage by raising alternating current.
For a transformer, efficiency,
Efficiency, $n=\frac{\text { ouput power }}{\text { input power }}=\frac{E_{S} I_{s}}{E_{\rho} I_{p}}$
For an ideal transformer, efficiency, η is 100%. But in a real transformer, the efficiency varies from $90-99 \%$. This indicates that there are some energy losses in the transformer.

Step-up transformer	Steo-down transformer
1. $\quad E_{s}>E_{p}$	1. $E_{s}<E_{p}$
2. $\quad N_{s}>N_{p}$	2. $N_{s}<N_{p}$
3. $\quad I_{s}>I_{p}$	$3 . I_{s}>I_{p}$
4. $\quad Z_{s}<Z_{p}$	4. $Z_{s}<Z_{p}$
5. $\quad \mathrm{k}>\mathrm{I}$	$5 . \mathrm{k}<\mathrm{I}$

CHOKING COIL

- Let us consider a choke coil of large inductance L and low resistance R. Then, the power factor of the given circuit will be given by (as $R \lll \omega L$)
$\cos \phi=\frac{R}{\sqrt{R^{2}+\omega^{2} L^{2}}}=\frac{R}{\omega L}$
- Now, because we know that $\mathrm{R} \lll \omega \mathrm{L}$, the power factor is minimal, the power absorbed will be very small. Furthermore, due to the coil's high impedance (high inductance), the current flowing through it is quite modest. As a result, such a coil is favoured in electrical circuits for changing current to any desired value while minimising energy waste.

Circuit elements	Resistance/Reactance	Current Amplitude	Phase angel ϕ
$\stackrel{N}{M}^{R}$	R	$I_{R_{0}}=\frac{V_{0}}{R}$	0
$\stackrel{L}{l}$	Inductive Reactance $X_{L}=\omega L$	$\mathrm{I}_{L_{0}}=\frac{V_{0}}{X_{L}}$	($\pi / 2$) i.e. current lags voltage by 90°
H^{C}	Capacitive Reactance $\mathrm{X}_{\mathrm{c}}=\frac{1}{\omega \mathrm{C}}$	$I_{c_{0}}=\frac{V_{0}}{X_{c}}$	($-\pi / 2$) i.e., current leads voltage by 90°

(c) For a circuit having more than one circuit element connected in a series, we summarise the results in the below table:

Circuit elements	Impedance \mathbf{Z}	Current amplitude	Phase angle ϕ
$W^{R}-11^{\mathrm{C}}$	$\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}^{2}}$	$I_{0}=\frac{V_{0}}{\sqrt{R^{2}+X_{L}^{2}}}$	$0<\phi<\left(\frac{\pi}{2}\right)$
$-\mathcal{W}^{R}-11^{\mathrm{C}}$	$\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{c}}^{2}}$	$\mathrm{I}_{0}=\frac{\mathrm{V}_{0}}{\sqrt{\mathrm{R}^{2}+\mathrm{XC}^{2}}}$	$\left(-\frac{\pi}{2}\right)<\phi<0$
$. \mathcal{W}^{\mathrm{W}} \dot{e}^{\mathrm{L}} e-11^{\mathrm{C}}$	$\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$	$I_{0}=\frac{V_{0}}{\sqrt{R^{2}+\left(X_{L}-X_{L}\right)^{2}}}$	$\begin{aligned} & \phi>0 \text { if } X_{L}>X_{C} \\ & \phi<0 \text { if } X_{L}<X_{C} \end{aligned}$

(d) For series LCR circuit,
(i) The impedance is $\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}$
(ii) The current lags the voltage by phase angle $\phi=\tan ^{-1} \frac{\left(X_{L}-X_{C}\right)}{R}$

FORMULAE SHEET

(a) In an AC circuit, sinusoidal voltage source of amplitude V_{0}. is represented as:

$$
V(t)=V_{0} \sin \omega t
$$

The current in the circuit has amplitude I_{0} and lags the applied voltage by phase angle ϕ. Current is represented as:

$$
\mathrm{I}(\mathrm{t})=\mathrm{I}_{0} \sin (\omega \mathrm{t}-\phi)
$$

(b) For a single-element circuit (a resistor, a capacitor or an inductor) connected to the AC voltage source, we summarise the results in the below table:
(e) Impedance for parallel LCR circuit, is given by

$$
\frac{1}{Z}=\sqrt{\frac{1}{R^{2}}+\left(\frac{1}{\omega L}-\omega C\right)^{2}}=\sqrt{\frac{1}{R^{2}}+\left(\frac{1}{X_{L}}-\frac{1}{X_{C}}\right)^{2}}
$$

The phase angle by which the current lags the voltage is

$$
\phi=\tan ^{-1} R\left(\frac{1}{X_{L}}-\frac{1}{X_{C}}\right)=\tan ^{-1} R\left(\frac{1}{\omega L}-\omega C\right)
$$

(f) The RMS (root mean square) value of voltage and current in an AC circuit are given as
$V_{r m s}=\frac{V_{0}}{\sqrt{2}}$, and $I_{\text {rms }}=\frac{I_{0}}{\sqrt{2}}$
(g) Average power of an AC circuit is $\langle\mathrm{P}(\mathrm{t})\rangle=\mathrm{I}_{\mathrm{rmms}} \mathrm{V}_{\mathrm{mm} 15} \cos \phi$ where $\cos \phi=\frac{\mathrm{R}}{\mathrm{Z}}$ is the power factor of the circuit.
(h) Quality factor Q of LCR circuit is $Q=\frac{\omega_{0} L}{R}=\frac{1}{R} \sqrt{\frac{L}{C}}$
(i) For a transformer, the ratio of secondary coil voltage to that of primary coil voltage is $\frac{V_{2}}{V_{1}}=\frac{N_{2}}{N_{1}}$ where N_{1} is number of turns in primary coil, and N_{2} is number of turns in secondary coil.
For the step-up transformer, $\mathrm{N}_{2}>\mathrm{N}_{1}$; for step down transformer, $\mathrm{N}_{2}<\mathrm{N}_{1}$.

SOLVED PROBLEM

Example 1:

An electric heater draws 2.5 A current from a $220-\mathrm{V}, 60-\mathrm{Hz}$ power supply. Find
(a) The average current
(b) The average of the square of the current
(c) The current amplitude
(d) The supply voltage amplitude

Solution:

In AC circuit, the average value of currant over a long time interval is zero but I^{2} is not zero. The r.m.s. value of current and voltage is given by $I_{\text {rms }}=\frac{I_{\text {max }}}{\sqrt{2}}$ and $V_{\text {rms }}=\frac{V_{\text {max }}}{\sqrt{2}}$.
(a) The average of sinusoidal AC values over any whole number of cycles is zero.
(b) RMS value of current $=I_{\text {rms }}=2.5 \mathrm{~A}$ so, $\left(I^{2}\right)_{\mathrm{av}}=\left(I_{\text {rms }}\right)^{2}=6.25 \mathrm{~A}^{2}$
(c) $I_{\text {rms }}=\frac{I_{\mathrm{m}}}{\sqrt{2}}$; So, current amplitude $\mathrm{I}_{\mathrm{m}}=\sqrt{2} \mathrm{I}_{\mathrm{rms}}=\sqrt{2}(2.5 \mathrm{~A})=3.5 \mathrm{~A}$
(d) $\mathrm{V}_{\mathrm{rms}}=220 \mathrm{~V}=\frac{\mathrm{V}_{\mathrm{m}}}{\sqrt{2}}$. So, supply voltage amplitude
$\mathrm{V}_{\mathrm{m}}=\sqrt{2}\left(\mathrm{~V}_{\mathrm{rms}}\right)=\sqrt{2}(220 \mathrm{~V})=311 \mathrm{~V}$.

Example 2:

Find the RMS value of current $\mathrm{I}=\mathrm{I}_{\mathrm{m}} \sin \omega \mathrm{t}$ from
(i) $\mathrm{t}=0$ to $\mathrm{t}=\frac{\pi}{2 \omega}$ (ii) $\mathrm{t}=\frac{\pi}{2 \omega}$ to $\mathrm{t}=\frac{3 \pi}{2 \omega}$

Solution:

In AC circuit over time interval $0 \leq t \leq T$ the RMS value of current is given by

$$
I_{\mathrm{rms}}=\sqrt{\frac{\int_{0}^{T} I^{2} d t}{\int_{0}^{T} d t}}=\sqrt{\frac{\int_{0}^{T} I_{0}^{2} \sin ^{2}(\omega \tau) d t}{\int_{0}^{T} d t}}=\frac{I_{0}}{\sqrt{2}}
$$

where $T=\frac{2 \pi}{\omega}$
(i) $I_{\text {rms }}=\sqrt{\frac{\int_{0}^{\frac{\pi}{\omega}} I_{m}^{2} \sin ^{2}(\omega t) d t}{\frac{\pi}{\omega}}}=\sqrt{\frac{I_{m}^{2}}{2}}=\frac{I_{m}}{\sqrt{2}}$
ii) $I_{\text {rms }}=\sqrt{\frac{\int_{\frac{\pi}{2}}^{\frac{3 \pi}{2 \pi}} I_{m}^{2} \sin ^{2}(\omega t) d t}{\frac{\pi}{\omega}}}=\sqrt{\frac{I_{m}^{2}}{2}}=\frac{I_{m}}{\sqrt{2}} A$

Example 3:

When a voltage $\mathrm{V}_{\mathrm{s}}=200 \sqrt{2} \sin \left(\omega \mathrm{t}+15^{\circ}\right)$ is applied to an AC circuit, the current in the circuit is found to be $\mathrm{I}=2 \sin (\omega t+\pi / 4)$ then average power consumed in the circuit is
(A) 200 W
(B) $400 \sqrt{2} \mathrm{~W}$
(C) $100 \sqrt{2} \mathrm{~W}$
(D) $200 \sqrt{2} \mathrm{~W}$

Solution:

Power in any AC circuit is calculated as $\mathrm{P}_{\mathrm{av}}=\mathrm{V}_{\text {rms }} \mathrm{I}_{\mathrm{ms}} \cos \phi$ where ϕ is phase angle between V and I .
$P_{a v}=V_{\text {rms }} I_{\text {rms }} \cos \phi=\frac{200 \sqrt{2}}{\sqrt{2}} \cdot \frac{2}{\sqrt{2}} \cos \left(30^{\circ}\right)=100 \sqrt{6} \mathrm{~W}$

Example 4:

An alternating voltage of 220 V RMS at a frequency of 40 cycles/second is supplied to a circuit containing a pure inductance of 0.01 H and a pure resistance of 6Ω in series. Calculate (a) The current, (b) Potential difference across the resistance, (c) Potential different across inductance, (d) The time lag.

Solution:

The impedance of $L R$ circuit is $Z=\sqrt{R^{2}+(\omega L)^{2}}$. The RMS value of the current is $I_{\text {rms }}=\frac{V_{r m s}}{Z}$. In $L R$ circuit, the current lags the applied voltage by phase angle ϕ obtained as $\phi=\tan ^{-1}\left(\frac{\omega \mathrm{~L}}{\mathrm{R}}\right)$.
The impedance of the L-R series circuit is given by:
$Z^{2}=\left[R^{2}+(\omega L)^{2}\right]^{1 / 2}=\left[(R)^{2}+(2 \pi f L)^{2}\right]^{1 / 2}$ $=\left[62+(2 \times 3.14 \times 40 \times 0.01)^{2}\right]^{1 / 2}=6.504 \Omega$
(a) RMS value of the current: $\mathrm{I}_{\mathrm{rms}}=\frac{\mathrm{V}_{\mathrm{rms}}}{\mathrm{Z}}=\frac{220}{6.504}=33.83 \mathrm{~A}$
(b) The potential difference across the resistance is given by: $\mathrm{V}_{\mathrm{R}}=\mathrm{I}_{\text {rms }} \times \mathrm{R}=33.83 \times$ $6=202.83 \mathrm{~V}$.
(c) Potential difference across the inductance is given by:
$\mathrm{V}_{\mathrm{L}}=\mathrm{I}_{\text {rms }} \times(\omega \mathrm{L})=33.83 \times(2 \times 3.14 \times 0.01)=$ 96.83 V
(d) Phase angle $\phi=\tan ^{-1}\left(\frac{\omega \mathrm{~L}}{\mathrm{R}}\right)$; So, $\phi=\tan ^{-1}$ $(0.4189=22.46)$
Now time lag $=\frac{\phi}{360}=T=\frac{22.46}{360}=0.0623 \mathrm{~s}$

Example 5:

$\mathrm{A} \frac{9}{100 \pi} \mathrm{H}$ inductor and a 12Ω resistance are connected in a series to a $225 \mathrm{~V}, 50 \mathrm{~Hz}$ ac source. Calculate the current in the circuit and the phase angle between the current and the source voltage.

Solution:

The impedance of $L R$ circuit is $Z=\sqrt{R^{2}+(\omega L)^{2}}$. The RMS value of the current is $I_{\text {rms }}=\frac{V_{r m s}}{Z}$. In $L R$ circuit, the current lags the applied voltage by phase angle ϕ obtained as $\phi=\tan ^{-1}\left(\frac{\omega L}{R}\right)$.

Here, $X_{L}=\omega \mathrm{L},=2 \pi \mathrm{fL}=2 \pi \times 50 \times \frac{9}{100 \pi}=9 \Omega$
So, $Z=\sqrt{R^{2}+X_{L}^{2}}=\sqrt{12^{2}+9^{2}}=15 \Omega$
(a) $I=\frac{V}{Z}=\frac{225}{15}=15 \mathrm{~A}$ and
(b) $\phi=\tan ^{-1}\left(\frac{X_{\mathrm{L}}}{\mathrm{R}}\right)=\tan ^{-1}\left(\frac{9}{12}\right)=\tan ^{-1} 3 / 4=37^{\circ}$
i.e., the current will lag the applied voltage by 37° in phase.

Example 6:

A choke coil is needed to operate an arc lamp at $160 \mathrm{~V}(\mathrm{RMS})$ and 50 Hz . The arc lamp has an effective resistance of 502 when running of $10 \mathrm{~A}(\mathrm{RMS})$. Calculate the inductance of the choke coil. If the same arc lamp is to be operated on 160 V (dc), what additional resistance is required? Compare the power losses in both cases.

Solution:

The choke coil is a LR circuit having large inductance and small resistance. The potential difference across the resistor and inductor is added vectorially: $\mathrm{V}^{2}=\mathrm{V}_{\mathrm{R}}^{2}+\mathrm{V}_{\mathrm{L}}^{2}$.

