

SECTION OFFICER (GEN/F&A/S&P) AND ASSISTANT SECTION OFFICER (GEN/F&A/S&P)

$PAPER-2 \parallel VOLUME - 7$

Environment, Ecology and Biodiversity

COMBINED ADMINISTRATIVE SERVICES EXAMINATION

(CASE – 2023)

S.No.	Page Chapter Name No.					
1.	Ecology 1					
	Levels of Ecological Organisations					
	 Species/ Individual 					
	• Population					
	• Community					
	• Ecosystem					
	 Biome 					
	o Biosphere					
	• Species					
	o Adaptation					
	\circ Speciation					
	\circ Extinction					
	Biotic Interactions					
	Ecotone					
	• Characteristics of Ecotone					
	Ecological Niche					
	 Components of Niche 					
	 Characteristics of Niche 					
	Ecological Succession					
	 Stages of Succession 					
	 Succession in Plants 					
	 Succession in Water/ Hydrosere stages 					
2.	Ecosystem	14				
	Components of an Ecosystem					
	 Biotic Components 					
	 Abiotic Components Europtions of Ecosystems 					
	Functions of Ecosystems					
	Attributes of Ecosystem					
	 Energy Flow 					
	• Trophic Levels					
	• Food Chain					
	 Food Web 					
	Ecological Pyramid					
	 Pyramid of numbers Dynamid of Diamages 					
	 Pyramid of Biomass Dynamid of Energy 					
	Pyramid of Energy Limitations of Ecological Dynamids					
	Elimitations of Ecological Pyramius Bollutants and Trophic lovel					
	Riogeochemical/Nutrient Cyclos					
	\sim Carbon Cycle					

	 Water/ Hydrological Cycle 	
	 Phosphorus Cycle 	
	 Sulphur Cycle 	
	Classification of Ecosystem	
	 Terrestrial Ecosystems 	
	 Aquatic Ecosystems 	
	 Man-Made Ecosystems/ Artificial Ecosystems 	
	Ecological Productivity	
3.	Biodiversity	34
	Levels of Biodiversity	
	 Genetic Diversity 	
	 Species Diversity 	
	Ecosystem Diversity	
	Importance of Biodiversity	
	Biodiversity Loss	
	\sim Beasons	
	 Consequences of Biodiversity Loss 	
4	Conservation of Biodiversity	42
ч.	• In Situ Conservation	72
	Biosphoro Posorvo	
	 Displicit Reserve National Parks 	
	 Wildlife Sanctuaries 	
	 Conservation Paservo & Community Paservos 	
	 Sacred Groves in India 	
	 Marine Protected Areas 	
	 Hone Spots 	
	 Biodiversity Hotspots 	
	 Reserved and Protected forests 	
	 Preservation plots 	
	\circ Elephant Corridors	
	 Lion Conservation in India 	
	 Rhino Conservation in India: 	
	 Gangetic Dolphin 	
	\circ Show Leonard	
	\circ Gharial	
	 Great Indian Bustard 	
	 Ex-situ/ Off- site conservation 	
	$\sim 700/700$ logical Parks	
	\circ Seed banks	
	 Seed balls Seed vaults: 	
	• Gene Banks	
	\circ Botanical gardens	
	 Botanical gardens Horticultural gardens 	
	Social Ecrostry	
	Social Follesti y Earm Earactay	
	• Faill Forestry	
	Community Forestry	
	Extension Forestry	

	•	Agroforestry	
	•	Government Initiatives on Biodiversity Conservation	
		 Major Authorities 	
		• Major Acts	
		 Government Initiatives 	
		• Major Committees	
		 Major International Biodiversity Organizations and NGOs 	
5.	Wetl	ands	71
	٠	Importance of Wetlands	
	٠	Reasons for Depletion	
	٠	Types of Wetlands	
		o Swamps	
		 Marshes 	
		 Bogs & Fens 	
		o Pocosin	
	٠	Functions of Wetland	
	٠	International Conservation Efforts	
		 Ramsar Convention 	
		 Montreux Record 	
		 Wetland International 	
		 Changwon Declaration on Human well-being and Wetlands 	
6.	Cora	l Reefs	77
	•	Favourable conditions	
	٠	Types of Coral Reefs	
		 Fringing Reefs 	
		 Barrier Reefs 	
		o Atolls	
		 Other Reef Types 	
	٠	Important Coral reefs of the World	
	٠	Coral Bleaching	
		 Causes of Coral Bleaching 	
		 Types of Coral Bleaching 	
	٠	Global Efforts to Conserve Coral Reefs	
		 Measures taken for coral restoration by India 	
		 Wetland Conservation Efforts in India 	
7.	Man	grove	84
	٠	Adaptations of Mangroves	
	٠	Benefits of the Mangroves	
	٠	Threat to Mangroves	
	•	Global Initiatives for Mangrove Conservation	
	٠	Distribution of Mangroves in India	
	•	Indian Government's Initiatives for Mangrove Conservation	
	•	Constal regulation Zones	
8.	Susta	ainable Agriculture	91
	•	Features of Sustainable Agriculture	
		 Principles of Sustainable Agriculture 	
	•	Need for Sustainable Agriculture	
	•	Sustainable Agriculture in INdia	
	•	Techniques of Sustainable Agriculture	
		 Zero Tillage / No Tillage / Nil Tillage 	
		 Zero Budget Natural Farming (Zbnf) 	

- Plantation Agriculture
- Crop Rotation
- o Dryland Farming
- Wetland Farming
- o Terrace Cultivation
- Permaculture
- o Push-Pull Agricultural Pest Management
- o Polyculture Farming
- Agroforestry
- Biodynamic Farming
- System Of Rice Intensification
- Precision Farming
- Conservation Agriculture
- o Intercropping
- Natural Farming
- Floating Farming
- Vertical Farming

9. Environment

- Environmental Degradation
 - o Environmentalism
- Major Environmental Movements in India
 - o Bishnoi Movement
 - o Chipko Movement
 - o Save Silent Valley Movement
 - Jungle Bachao Andolan
 - Appiko Movement
 - o Narmada Bachao Andolan
 - o Tehri Dam Conflict
- InternationalEfforts for Environment Protection
 - United Nations Conference on Human Development (1972)
 - United Nations Environment Programme (UNEP)
 - o Brundtland Commissionn
 - Rio Summit/ Earth Summit (1992)
 - o Global Environment Facility
 - o International Renewable Energy Agency
 - International Energy Agency
- Indian Efforts for Environment
 - o Center for Science and Environment
 - o Green Skill Development Programme
 - National Green Corps 'Ecoclub'
 - Energy and Resource Institute
- Global and Indian Environment Funds
 - Adaptation for Smallholder Agriculture Programme (ASAP)
 - Adaptation Fund
 - o Amazon Fund
 - BioCarbon Fund
 - Forest Carbon Partnership Facility
 - \circ $\,$ Global Energy Efficiency and Renewable Energy Fund $\,$
 - o Green Climate Fund
 - Least Developed Countries Fund
 - Pilot Program for Climate Resilience

97

- Special Climate Change Fund
- Global Climate Change Alliance
- o Climate Investment Funds
- Carbon Partnership Facility
- The BioCarbon Fund Initiative For Sustainable Forest Landscape (ISFL)

107

- Carbon Initiative for Development
- o Forest Carbon Partnership Facility
- Partnership for Market Readiness

10 Environmental Pollution Pollutants

- Air Pollution
 - o Major Air Pollutants and their sources
 - o Indoor Air Pollution
 - Impact of Air Pollution
 - Measures to Curb Air Pollution
 - o Global Initiatives for Mitigating Air Pollution
 - Indian Initiatives for Mitigating Air Pollution
- Water Pollution
 - Sources of Water Pollution/Pollutants
 - Measurement of Water Pollution
 - o Impacts of Water Pollution
 - o Indian Government efforts to curb river pollution
 - Global Initiatives to curb water pollution
- Eutrophication
 - Types of Eutrophication
 - Consequences of Eutrophication
 - Controlling Eutrophication
- Acid Rain
 - Types of Acid Deposition
 - o Sources
 - o Acid Rain Formation
 - Impact of Acid Rain
 - Measures to Control Acid Rain
- Soil Pollution
 - o Sources of soil pollution
 - $\circ \quad \text{Effects of soil pollution} \\$
 - o Remedial Measures
 - o Global Actions to Tackle Soil Pollution
 - Indian Initiatives to tackle Soil Pollution
- Noise Pollution
 - o Effects of Noise pollution
 - \circ Control of Noise pollution
 - o Central Government's Regulation
- Radioactive Pollution
 - Types of radiations and their effects
 - Sources of radiation
 - o Types of radiation particles
 - o Control Measures
- Thermal Pollution
 - o Sources of thermal pollution
 - o Impact of thermal pollution
 - Methods to control thermal pollution

• Mercury Pollution

- Source of Mercury in the environment
- o Mercury Contamination in India
- o Effects of mercury pollution
- o Minamata disease

11. Solid Waste Management

- Classification of Wastes
- Waste Management
- Types of Waste
 - o E-Waste
 - o Organic Waste
 - o Chemical waste
 - o Bio-Medical Waste
 - o Radioactive waste
- Methods of solid waste management
- Plastic waste management
 - o Sources of Plastic Waste
 - Types of Plastic Waste
 - Impact of Plastic Waste
 - Recycling of Plastic Waste
 - o India's Plastic Waste Industry
 - o Government Regulations
 - Global Interventions
- Biodegradable plastics/ bioplastics
 - Advantages of bioplastics
 - Disadvantages of bio-plastics
- Sewage Treatment
 - Impact of Sewage
 - o Sewage Treatment
- Bioremediation
 - o In-situ remediation techniques-
 - o Ex-situ remediation techniques
 - o Advantages of Bioremediation
 - Limitation of Bioremediation

12. Global Warming & Climate Change

- Greenhouse Effect
 - o Greenhouse Gases
 - Share of GHGs in Global Warming
- Global Warming
 - o Causes of Global Warming
 - Effects of Global Warming
- Climate Forcing
- Climate Change
 - o Factors affecting Climate Change
 - Impact of Climate Change
- Climate Change in India
 - o Indian Himalayan Region
 - Indian Efforts to Counter Climate Change
- Global Efforts to Combat Climate Change
 - \circ Under 2 coalition
 - International Resource Panel

145

132

	 Global Carbon Project 	
	 Intergovernmental Panel on Climate change (IPCC) 	
	 United Nations Framework Convention on Climate Change (UNECCC) 	
	 Kvoto Protocol 	
	• COP 24	
	O COP 25	
	o COP 26	
13.	Climate Change Mitigation Mechanisms	159
-	Carbon Credit	
	Carbon Sequestration	
	Carbon Sink	
	Carbon offsetting	
	Carbon Tay	
	Groop Economy	
	Green Economy	
1/	• Geo-Engineering	169
14.	• Ozono doplating Substancos	100
	Chemistry behind Ozene Depletion	
	Chemistry benind Ozone Depletion	
	Impacts of Ozone Depietion Ozone Pollution	
15		175
15.		1/5
	 Causes Impacts of Departification 	
	Impacts of Desertification	
	Solutions of Desertification	
	International efforts to curb Desertification	
	Indian Government Efforts to Curb Desertification	470
16.	Deforestation	179
	Primary Causes of Deforestation	
	Major Effects of Deforestation	
	International Efforts to Curb Deforestation	
	 Indian Government Efforts to Curb Deforestation 	
	Afforestation	
17.	Environmental Impact Assessment	186
	Evolution of EIA	
	Objectives of EIA Finitemental Common and EIA	
	Environmental components of EIA Significance	
	 Salient Features of 2006 Amendments to FIA Notification 	
	General Procedure of FIA	
	• EIA Process (as per 2006 amendments)	
	 Draft EIA Notification, 2020 	
	Difference in EIA and SEA	
	Importance of EIA	
	Shortcomings of EIA Process	
	 Recommendations to improve the EIA Process 	
	Various Stakeholders in EIA	

CHAPTER | Ecology

Ecology

'Ecology' - Greek words- 'Oikos = household + 'logos' = learning about the ecosystem.

Scientific study of the interactions between organisms and their environment.

First coined by Ernst Haeckel in 1869.

Objective- to **improve the understanding of different life processes, adaptations and habitats, interactions, and biodiversity** of organisms.

Types of ecology

- Autoecology: Study of individual organism or individual species
- Synecology: Study of group of organisms of different species which are associated together as a unit in the form of a community.

Levels of Ecological Organisations

- 1. Species/ Individual
 - Features:
 - Similar genetic makeup
 - Can interbreed and produce fertile offspring.

Species Types	Features	Example
Keystone Species	 Determine the ability of a large number of other species to survive. Extinction of keystone species → extinction of other species. 	Bees → pollination of fruits and flowers
Indicator Species	 indicator of the state/certain processes of/within an ecosystem most sensitive species in a region. early warning for ecological threat. 	Lichens - air pollution, Mayflies - quality of freshwater
Endemic Species	• Endemic to a region i.e. Exist only in one geographical region.	Asiatic Lion - Gir forest Kashmir Stag - Kashmir valley
Invasive Alien Species	 non-native to an ecosystem results in decline or total elimination of native species through competition, predation, or transmission of pathogens 	Prosopis juliflora Lantana Camara
Flagship/ Charismatic species	 iconic due to their unique appeal. selected species that are raised to support biodiversity conservation. 	Panda, polar bears, lions, tigers, sea turtles etc.
Umbrella species	 Selected for making conservation-related decisions. Protecting these species protects several other species that form the ecological community of its habitat. 	Spotted owl, Jaguar, Giant Panda
Dominant species	 Species having substantially higher abundance or biomass than other species in a community. Exert a powerful control over the occurrence and distribution of other species. 	Tidal swamps in the tropics - dominated by species of mangrove (Rhizophoraceae).
Foundation species	 Play a major role in creating or maintaining a habitat that supports other species. 	Corals - produce the reef structures on which countless other organisms, including human beings, live.

Critical Link	• Play an important role in supporting network	Mycorrhizal fungi helps vascular plants
Species	species such as pollinators, dispersal agents, etc.	in obtaining inorganic nutrients from soil and organic residues.
Edge Species	• Found abundantly in an ecotone boundary.	Birds

2. Population

- Community of interbreeding organisms (same species), occupying a defined area during a specific time.
- Population Growth:
 - Variation in population (Increase or decrease) when measured at two different times.
 - Can either be **positive or negative.**
 - Main factors behind increase- birth and immigration.
 - Main factors behind decrease death and emigration.

Fig.1

Biotic Potential

 Maximum rate at which a population can increase when resources are unlimited and environmental conditions are ideal

"Define the concept of carrying capacity of an ecosystem as relevant to an environment. Explain how understanding this concept is vital while planning for the sustainable development of a region." UPSC 2019

3. Community

- Different species occupying a defined area during a specific time.
- Usually named after dominant plant form.
- Neither fixed nor rigid.
- Can be small or large.

- Classification based on size and level of relative autonomy:
 - Major Community -
 - Large Sized
 - Well Organized
 - Relatively independent
 - Only dependent on Sun's energy
 - Free of input and outputs of adjoining communities
 - Minor Community -
 - Dependent on adjoining communities.
 - Often called societies.
 - Not independent completely

- 4. Secondary aggregations within a major community Ecosystem
 - A functional unit where living organisms interact among themselves and with the surrounding physical environment.
- 5. <u>Biome</u>
 - Large naturally occurring community of flora and fauna occupying a major habitat.
 - Plants and animals in a biome have common characteristics due to similar climate.
 - A biome can comprise a variety of habitats.
 - E.g. Rainforest biome or tundra biome.

	Biome	Ecosystem
DefinitionRegion of vegetation and animalsIn		Interaction among organism in a set area
	determined by climate and latitude	
Climate	Strongly influenced by climatic factors like	Not strongly influenced by climatic factors like rainfall and
	rainfall and temperature	temperature
Latitude	Specifically influenced	Not specifically influenced
Size	Very large, covering vast distances	Small, not covering vast distances
Animal life Do not necessarily interact with each other		Always interact with each other in trophic levels and
		food webs
Examples	Tropical rainforest	Coral reef ecosystem

Major Biomes of the world, PRE 2021

Biomes	Subtypes	Regions	Climatic Characteristics	Soil	Flora and Fauna
	Equatorial Forest	10° N-S	Temp. 20-25°C, evenly distributed	Acidic, poor in nutrients	Multi- layered canopy tall and large trees
	Tropical	10°-25° N-S	Temp. 25-30°C,	Rich in nutrients	Less dense, trees of medium height; many varieties
	Deciduous Forest		Rainfall: 1,000mm, seasonal		coexist. Insects, bats, birds and mammals are
					common species in both
cal	Temperate	Eastern North America, N.E.	Temp. 20-30° C,	Fertile, enriched with	Moderately dense broad leaves. Less diversity of
opi	Forest	Asia, Western and Central	Rainfall evenly distributed 750-	decaying litter	plant species. Oak, Beach, Maple etc. are some
Ĕ		Europe	1,500 mm,		common species. Squirrels, rabbits, skunks, birds,
			Well defined seasons		black bears, mountain lions etc.
	Boreal Forest	Eurasia and North America	Short moist moderately warm	Acidic, poor in	Evergreen conifers like pine, fur and spruce etc.
		(Siberia, Alaska, Canada, and	summers and long cold dry winter.	nutrients, thin soil cover	Woodpeckers, hawks, bears, wolves, deer, hares
		Scandinavia)	Mostly snowfall		and bats are common animals
	Hot and Dry	Sahara, Kalahari, Thar, Rub-	Temp. 20 - 45°C,	Rich in nutrients with	Scanty vegetation; few large mammals, insects,
		al-Khali	Rainfall is less than 50mm	little or no organic	reptiles and birds
				matter	
	Semi arid	Marginal areas of hot	Temp. 21 - 38°C,	Rich in nutrients with	Scanty vegetation; few large mammals, insects,
		deserts	Rainfall is less than 50mm	little or no organic	reptiles and birds
ert		Del.	APONT	matter	
Des	Coastal	Atacama	Temp. 15 - 35°C,	Rich in nutrients with	Scanty vegetation; few large mammals, insects,
			Rainfall is less than 50mm	little or no organic	reptiles and birds
			l neach t	matter	LIN VOU
	Cold	Tundra regions	Temp. 2 - 25°C,	Rich in nutrients with	Rabbits, rats, antelopes and ground squirrels
			Rainfall is less than 50mm	little or no organic	
				matter	
	Tropical	Large areas of Africa,	Warm hot climates,	Porous with a thin layer	Grasses; trees and large shrubs absent; giraffes
7	Savannah	Australia, South America and	Rainfall 500-1,250 mm	of humus.	zebras, buffalos, leopards, hyenas, elephants, mice,
and		India			moles, snakes and worms etc., are common animals
ass	Temperate	Parts of Eurasia and North	Hot summers and cold winters,	Thin flocculated soil,	Grasses; occasional trees such as cottonwoods, oaks
ษั	Steppe	America	Rainfall 500 - 900 mm	base rich	and willows; gazelles, zebras, rhinoceros, wild
					horses, lions, varieties of birds, worms, snakes etc.

	Freshwater	Lakes, streams, rivers and	Temp. vary widely with cooler air	Swamps and marshes	Algal and other aquatic and marine plant
0		wetlands	temperatures and high humidity		communities with varieties of water dwelling
ati					animals
nby	Marine	Oceans, coral reefs, lagoons	Temp. vary widely with cooler air	Tidal swamps and	Algal and other aquatic and marine plant
4		and estuaries	temperatures and high humidity	marshes	communities with varieties of water dwelling
					animals
-		Slopes of high mountain	Temperature and precipitation vary	Regolith over slopes	Deciduous to tundra vegetation varying according to
lin		ranges like Himalayas, Andes	depending upon latitudinal zone		altitude
tud		and Rockies			
Iti					
4					

opporsuales Unleash the topper in you

Homeostasis

- Resistance to change.
- A mechanism used by organisms to control their internal environment despite a change in the external environment through physiological, morphological, and behavioral processes.
- A self-regulating process essential for survival.
- Eg. During summers, humans tend to sweat to regulate their body temperatures

6. Biosphere/Ecosphere:

• Narrow zone where all the spheres of the earth co-exist.

- It is the zone where life exists.
- Complicated and interconnected web that links all organisms with their physical environment.
- Stretches out from the lower part of sea channels to around 8 km over the ocean level.
- A zone of cooperation between the other 'spheres'.
- Only the biosphere has water in liquid form
- Transfer of energy and the cycling of minerals takes place.

Fig 4

Difference between Ecology, Ecosystem, and Environment

- Environment surroundings, or the area in which living organisms survive
- **Ecosystem** functional unit of the environment composed of biotic and abiotic components and their relationships with each other.
- Ecology- scientific study of the interactions between organisms, their surroundings occurring within an ecosystem or environment.

Species

Ecological Amplitude

 Every species has a specific range within which it can tolerate ecological changes

Evolution

- The process of species' features developing over time.
- Gradual change in the characteristics of population that occurs over the course of successive generations as a result of natural selection.

 Accounts for speciation and extinction, progressive changes as a result of natural selection, as well as the diversity of organisms of supposed common ancestry across geological time.

Types :

- Convergent evolution
 - Process by which two or more unrelated species develop similar traits in different types of environment.
 - Eg. Whales and penguins have decreased limbs and have evolved comparable adaptation features
- Divergent evolution
 - Occurs when a single species branches off into more than one
 - o Eg. Darwin's Finches
- Parallel evolution
 - Happens when two independent species evolve separately while preserving a high level of resemblance.
 - Eg. The woolly mammoth and elephant

Coevolution

- Evolution of two biologically-related taxonomic groups at the same time.
- Eg. blooming plants and the insects that pollinate them.

Adaptation

- Appearance, behaviour, structure, or manner of life of an organism that helps it to survive in a given environment.
- Forms:
 - Morphological Giraffe's neck grow longer as the trees grew taller;
 - Physiological In North American deserts, the kangaroo rat, in absence of an external source of water, is able to meet its water needs by oxidising the fat stored in its body;
 - Behavioural Migration of animals to a less harsh environment.

Acclimatisation

Modest changes occuring in the body of an organism over a short period of time in order to overcome minor challenges caused by changes in the environment.

Eg. When we're **climbing high mountains**, we need to **breathe more quickly.** Our bodies acclimate to the new conditions on the high mountain after a few days.

Phenotypic Plasticity

Refers to the changes in an organism's behaviour, morphology and physiology in response to a unique environment.

Fundamental to the way in which organisms cope with environmental variation, phenotypic plasticity encompasses all types of environmentally induced changes (e.g. morphological, physiological, behavioural) that may or may not be permanent throughout an individual's lifespan. For example, genetically identical water flea (Daphnia) clones can differ in their morphology depending on whether they are reared in the absence or presence of a potential predator.

Variation

• Changes in genetic makeup caused by the addition or deletion of certain genes.

- Causes: Mutations, climatic change, geographical barriers, and other factors.
- Eg: Variance in skin colour, hair type (curly or straight), eye colour and blood type among ethnic groups.

Adaptive Radiation

- "Adaptive Radiation refers to the adaptation of an organism that enables them to spread successfully or radiate into other environments."
- Ex. Finch species found in the Galápagos Archipelago have evolved through adaptive radiation, resulting in the diversification of their beak forms, allowing them to utilise a variety of food sources.

Mutation

- Change in genetic material caused by an error in DNA replication.
- New genes emerge in a population as a result of mutation.
- Meiosis and fertilisation produce a new mix of genes in every generation, in a sexually reproducing population known as recombination.
- As a result, members of the same species are not similar and differ.
- Causes of mutation:
 - Internal Causes: When DNA fails to duplicate correctly.
 - External Causes: When the DNA is exposed to certain chemicals or radiations, that causes the DNA to break down.

Speciation

- Elaborate process of forming new species from other existing species.
- Includes splitting of one species into two or more genetically distinct species.
- Takes place through continuous mutation of genes.
- Types:
 - Allopatric- occurs when one particular species moves away from each other because of the geographical barrier, like waterways or mountain range.

- Parapatric- occurs when species sharing a 0 common geographical area, breed only within their preferred regionshow varied characteristics and nature.
- Peripatric- Happens due to change in habitation. 0 However, in the process, they gain several character traits and pass on their offspring.
- **Sympatric** When several members of a species 0 are living closely. However, they mate with other members based on specific food habits or environment.
- Artificial- Results from lab experiments and 0 scientific advancement. Humans carry research work on other living organisms like fruit flies and create new species.

Fig. 6

Biotic Interactions

Extinction

- Process of evolution that leads to the disappearance • of a population or species."
- Over 99% of all the species that once lived on the Earth amounting to over five billion species are estimated to have been extinct.
- Types:
 - Natural Extinction: May occur due to tectonic 0 movement, a spike in volcanic activity or global warming
 - Artificial Extinction: May be induced by humans
- Direct causes Hunting, collecting, or capturing as well as persecution
- Indirect causes Habitat loss, change and fragmentation, as well as the introduction of exotic species

Туре	Species A	Species B	Interaction	
Mutualism	+	+	 Obligate Mutualism: Neither can survive without the other, Ex. algae and coral polyps (Zooxanthellae algae does photosynthesis and supplies food to coral polyps and coral polyps in turn provide shelter to the algae) Facultative Mutualism (Proto-cooperation): One species may survive without the other, Ex. Hermit crab and Sea anemone (Sea anemone grows on the back of the Hermit crab, providing camouflage and protection. In turn, the sea anemone is transported to areas of new food sources) 	
Commensal ism	+	0	 One is benefited from the other while the other remains unaffected Ex. Cattle egrets (a type of bird) live near cattle because when cattle graze, their movement stirs up insects. The birds have their insects and cattle are unaffected. 	
Parasitism	+	-	 One is benefited while the other is harmed Ex. Fleas are present on the body of dogs. They get shelter and food from them while they harm their host by biting them, sucking their blood and causing itching. 	
Predation	+	-	 One survives by eating the other and in its absence dies itself. Ex. Lion and Deer 	
Competitio n	-	-	 Adversely affects both the species. Occurs when resources are scarce. inter-specific (within different species- ex. Lion and Cheetah competing for deer) 	

			• intra-specific (within same species- ex. Monkeys fighting for fruits)	
Neutralism	0	0	None is affected by the association.	
Amensalis	-	0	 One is harmed while the other remains unaffected 	
m			• Ex. Algal bloom kills fishes but algae does not benefit from the death of	
			fishes	

*0 = No effect on species, + = beneficial for species, - = harmful to the species

Ecotone

and integrate.

• Transition area between two biomes (diverse ecosystems).

Zone where two communities meet

 Eg. the mangrove forests - ecotone between marine and terrestrial ecosystem, grassland (between forest and desert), estuary (between freshwater and saltwater) and marshland (between dry and wet).

Characteristics of Ecotone

- Zone of tension that contains features of both bordering communities and some species not found in the overlapping communities.
- May be narrow (grassland and forest) or broad (forest and desert).
- Incoming community number and density of species increases
- Outgoing community number and density of species decreases.
- Well-developed ecotone when some organisms are entirely different from adjoining communities.

Ecocline

- Zone of gradual but continuous change from one ecosystem to another when there is no sharp boundary between the two in terms of species composition.
- Occurs across the environmental gradient (gradual change in abiotic factors such as altitude, temperature (thermocline), salinity (halocline), depth, etc.).

Ecophene or Ecads

• These are variations in **phenotypes** (observable physical characteristics)

• Eg. Indian living in Africa will have higher melanin in skin than one living in India

Ecotype

A group of organisms, normally a subdivision of a species, that is adapted to a specific environment.

- It occurs when ecophenes remain in their new environment for too long
- The morphological changes become genetically fixed.

Edge Effect

 When the number and population density of species in the ecotone >> either community - edge effect.

Fig.8

• Eg. The density of birds is greater between forest and desert.

Edge Species

Species that occur primarily or most abundantly in the ecotone.

Ecological Niche

- Joseph Grinnell has defined Ecological Niche as the sum of the habitat requirements and behaviours that allow a species to persist and produce offspring
- Unique functional role of a species in an ecosystem

Components of Niche

- Habitat: Environment in which an organism lives ; supplies all the required factors for the existence of a species.
- Food: Food resources that the species obtains from its environment.
- Environmental condition: Physical and chemical factors (temperature, soil, humidity).
- **Relationships: Interaction of species** with other organisms in the ecosystem

Types of Ecological Niche:

- Habitat niche where it lives,
- Food niche what is eats or decomposes & what species it competes with,
- Reproductive niche how and when it reproduces,
- **Physical & chemical niche** temperature, land shape, land slope, humidity & another requirement.
- Fundamental Niche- Niche that would prevail in the absence of competition and limiting factors theoretical in nature.
- Realized Niche- Due to competition for resources from other members, a species only occupies a part of its niche- species live in it
- Fundamental niche is always > realized niche.

Characteristics of Niche

- Describes organism's life history, habitat, interactions with other species and its place in the food chain
- Affected by physical conditions of an area
- Changes with the change in physical and biological factors
- Species commonly do not exploit their entire niche due to the presence of other species.
- No two species can have exactly identical niches.
- If so happens, there will be competition for the available resources and the less well-adapted species will be eliminated.

Niche vs Habitat

Habitat	Niche
Refers to the place where	Role played by species in
species live	an environment
Too many species, occupy	No two species can have
a single habitat	the same niche

Ecological Succession

 Process by which communities of plant and animal species in an area are replaced or changed into another over a period of time.

- A universal process of **directional change in vegetation**, on an ecological time scale.
- Occurs due to large scale changes or destruction (natural or manmade).
- Involves a progressive series of changes with one community replacing another until a stable, mature, climax community develops.

Stages of Succession

Fig. 9

- Pioneer community- First plant to colonize an area.
- Climax community- Final stage of succession- stable, mature, more complex and long-lasting.
- Successional stages or seres stage leading to the climax community.
- Each transitional community that is formed and replaced during succession is known as stage in succession or a seral community.
- Succession is characterized by:
 - Increased productivity
 - Shift of nutrients from the reservoirs
 - o Increased diversity of organisms
 - Gradual increase in the complexity of food webs.
- Faster in areas existing in the middle of the large continent because here seeds of plants belonging to the different species would reach much faster.

1. Primary Succession

- Occurs where no community has existed previously or has been completely wiped out.
- Terrestrial site is first colonized by a few hardy pioneer species (microbes, lichens and mosses).

Fig. 11

- Successful colonisation of plants is followed by animals, insects, birds and small invertebrates.
- Areas of occurence rock outcrops, newly formed deltas and sand dunes; emerging volcano islands and lava flows, glacial moraines (muddy area exposed by a retreating glacier), etc.

2. Secondary Succession

 Sequential development of biotic communities after the complete or partial destruction of the existing community by natural events (floods, droughts, fires, or storms or by human interventions such as deforestation, overgrazing)

- Abandoned land is first occupied by hardy species of grasses (that can survive in harsh conditions).
- Followed by tall grasses and herbaceous plants along with mice, rabbits, insects and seed-eating birds.
- Eventually, **some trees grow**, seeds of which may be brought by wind or animals.
- Abandoned land with time becomes dominated by trees and is transformed into a forest.

Fig. 12

Difference between Primary and Secondary Succession

Primary Succession	Secondary Succession
Soil is gradually developed.	Soil is well developed
Progress of succession is slow	Progress of succession is fast

Develops on a barren area	Develops on a disturbed area
Pioneer species come from the outside	Pioneer species come from within

Note:

Cyclic Succession

- Change in the structure of an ecosystem on a cyclic basis.
- Some plants remain dormant for the rest of the year and emerge all at once.
- Drastically changes the structure of an ecosystem.

Succession in Plants

- Xerarch- Succession that occurs on land (dry areas) where moisture content is low. Eg. on a bare rock.
- Hydrarch- Succession that takes place in a water body. Eg. ponds or lake.
- Hydrarch and xerarch succession lead to medium water conditions (mesic) – neither too dry (xeric) nor too wet (hydric).

2 CHAPTER

Ecosystem

	Toppers' Analysis
Weightage from th Prelims: 10-20% o Mains: Rare chance the chapter, but a	e Exam's point of view: total questions asked from the Environment. e of direct questions being asked from current Based Question can be asked.
Pre-requisite of the Class 12 NCERT Bio This chapter is cruc day-to-day econom Aspirants must rea	e Chapter: logy -Chapter-14 ial to building basic concepts of environment and is highly recommended for understanding ic changes. d this chapter before reading Newspapers and track regular policy changes.
 Ecosystem Pre-2 A functional unit organisms interact themselves and w surrounding physic Components of an I 	 Can be of any size but usually encompasses specific and limited species. Every organism in an ecosystem is dependent on other species and elements in that ecological community. If one part of an ecosystem is damaged, it has an impact on everything else.
Biotic Component Autotroph Produce their own using light, water, etc. Heterotro They take nouris from others as the not capable of their food Saprotrop Feed on dead matter generated plants and animals	Its Photoautotrophs Use sunlight to prepare their own food Image: Sources Chemoautotrophs Produce energy from CO2 using inorganic energy sources Image: Sources Chemoautotrophs Produce energy from CO2 using inorganic energy sources Image: Sources Chemoautotrophs Produce energy from CO2 using inorganic energy sources Image: Sources Feed directly on plants. Eg: Cow, Goat, grasshopper, etc. Image: Sources Carnivores Feed on primary consumers. Eg: foxes, snakes, etc. Image: Sources Top Carnivores Feed on secondary consumers Eg: Hawk, Tiger, Lion, etc. Image: Sources Image: Sources Microorganisms that feed on and decompose dead organic material. Image: Sources Microorganisms that feed on and decompose dead organic material. Image: Sources Microorganisms that feed on and decompose dead organic material. Image: Sources Small animals, like earthworms, mites, etc., feed on partially decomposed organic material. Image: Sources Small animals, like earthworms, mites, etc., feed on partially decomposed organic material. Contribute to the breakdown of detritus. Image: Sources

Phototropism

- Directional growth of plants and other organisms in response to light.
 - Positive Phototropism: towards the source of light
 - Negative Phototropism: away from the source of light

Photoperiodism:

- Physiological reaction of organisms to the length of day or night.
- Ex. Long-day plants (Spinach, sugar beet), Shortday plants (soybean, chrysanthemum) and dayneutral plants (sunflower, corn).

Abiotic Components

- Consist of non-living things, like rocks, soil, minerals, water, etc.
- Serve as sources of nutrients essential to the growth & metabolism of an organism.

Sun Light

- Solar radiation = primary source of energy
- Necessary for photosynthesis
- On the basis of light requirement plants are of following types:
 - Heliophytes: require full Sunlight for growth (ex. Sunflower)
 - Sciophytes: grow best in shady conditions (ex. Sandal tree)

Temperature

• Affects the **kinetics** of enzymes and **basic metabolism** of the organism

Note:

Depending on the temperature tolerance capability, organisms are:

- Eurythermal: tolerate a wide range of temperatures (ex. Cat, Dog, Tiger etc.)
- Stenothermal: restricted to a narrow range of temperature (ex. Penguin, Python, Crocodile etc.)

<u>Water</u>

Used by plants to distribute the nutrients to survive.

Note:

On the basis of water requirement plants are of following types:

- Hydrophytes: adapted to grow well in water. (ex. Lotus, water lily, sea weeds)
- **Mesophytes:** average water requirements. (ex. Rose)
- Xerophytes: adapted themselves to survive in water scarce areas like Deserts. (ex. Cactus, Pineapple)

On the basis of tolerance to salinity, organisms are of following types:

- Euryhaline: tolerant to a wide range of salinity (ex. Green crab)
- Stenohaline: tolerant to narrow range of salinity (ex. Goldfish)

Atmospheric Gases

Important for various biological processes necessary for organisms' growth and survival.

- Oxygen (required for respiration),
- Carbon dioxide (required by plants for photosynthesis),
- Nitrogen (required by plants as a macronutrient)

Wind

- A natural thermal regulator
- Aids in seed dispersal
- Negative effects of wind include soil erosion, forest fires.

Soil or Edaphic factor

- Acts as a provider of important nutrients for the plants.
- Anchors the plants to keep them in place to grow.
- Soil also **absorbs and holds water** for plants and animals.

Physiographic Factor

- Altitude: determines temperature- influences vegetation
- Latitude: variation in availability of insolation, climate, etc.
- Slopes: slope direction influences the availability of sunlight.