

State Civil Services

Jharkhand Public Service Commission (Preliminary & Main)

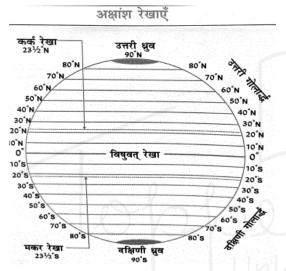
पेपर - 3B भाग - 1

भौतिक भूगोल

S.No.	Chapter Name	Page No.
1.	पृथ्वी	1
	• पृथ्वी की काल्पनिक रेखाएँ	
	• समय जोन (Time Zone)	
	• अन्तर्राष्ट्रीय तिथि रेखा (International Date Line)	
	• पृथ्वी की गति	
	• ग्रहण (Eclipse)	
2.	पृथ्वी का भू-गर्भिक इतिहास	6
	• पूर्व कैम्ब्रियन या आद्य कल्प (Precambrian or ArcheanEra)	
	• पुराजीवी कल्प (Palaeozoic Era)	
	• मेसोजासेइक कल्प (Mesozoic Era)	
	• सेनोजोइक कल्प (Cenozoic Era)	
3.	पृथ्वी का चुम्बकीय क्षेत्र	10
	• डायनमो प्रभाव	
	• मैग्नेटोस्फीयर	
	• भूचुंबकीय ध्रुव	
	• भूचुंबकीय उत्क्रमण	
	• चुंबकीय आनति	
4.	पृथ्वी की आंतरिक संरचना	14
	• पृथ्वी का आंतरिक भाग	
	• पृथ्वी की आंतरिक संरचना के अंतर्गत पृथ्वी की परतें	
	• भूकंपीय असम्बद्धता क्षेत्र	
5.	खनिज पदार्थ और चट्टान	18
	• चट्टानों का वर्गीकरण	
	• शिला चक्र	
6.	भू आकृति विज्ञान के सिद्धांत	21
	• वेगनर का महाद्वीपीय प्रवाह सिद्धां:	
	• समुद्र नितल का प्रसार सिद्धांत	
	• संवहन धारा सिद्धांत	
	• प्लेट विवर्तनिक सिद्धांत	

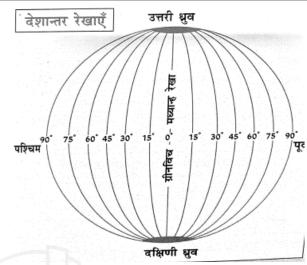
7.	भू आक्रतिक–प्रक्रिया	27
	• बहिर्जात बल	
	• अंतजित बल	
8.	प्रमुख भू आकृतियाँ	41
	• पर्वत	
	• पठार	
	• मैदान	
	• झीलें	
9	लघु भू आकृतियाँ	49
	• नदी का अपरदन से बनी भू-आकृतियाँ	
	• सागरीय जल द्वारा अपरदन से बनी भू-आकृतियाँ	

	• चूने के चट्टानी प्रदेशों में भूमिगत जल द्वारा निर्मित स्थलाकृतियाँ	
	• हिमानी भू-आकृतियाँ	
	• मरुस्थलीय भू-आकृतियाँ	
	• ज्वालामुखी स्थलकृतियाँ	
10.	जलवायु विज्ञान	65
	• वायुमण्डल	
	• ऊष्मीय विकिरण	
	• सूर्यातप	
	• पृथ्वी का ऊष्मा बजट	
	• तापमान	
	• एल्बेडो	
	• वायुदाब	
	• वायुमंडल का त्रिकोष्ठीय देशंतारीय संचार	
	• दाब पेटियों का मौसमी स्थानांतरण	
	• पवन	
	• जेट स्ट्रीम 	
	• वायुमंडल में जल	
	• बादल (Clouds)	
	• वर्षा	
	वायु राशियाँवाताग्र	
11.	चक्रवात (Cyclones) विश्व की जलवायु	01
11.	• कोपेन वर्गीकरण	91
12.	महासागर	96
	• विश्व के प्रमुख महासागर	
	• महासागरीय नितल उच्चावच	
	• महासागरीय जल का तापमान	
	• महासागरीय लवणता	
	• महासागरीय निक्षेप	
13.	महासागरीय जल की गतिशीलता	102
	 लहरें 	
	• महासागरीय धारा	
	• ज्वार भाटा	
14.	भारत में प्राकृतिक आपदाएं	107


1 CHAPTER

पृथ्वी

पृथ्वी की काल्पनिक रेखाएँ


अक्षांश (Latitude) - पृथ्वी सतह पर विषुवत रेखा के उत्तर या दिक्षण में एक याम्योत्तर (Meridian) पर पृथ्वी के केन्द्र से किसी भी बिन्दु पर मापी गई कोणीय दूरी को अक्षांश कहते हैं। इसे अंशों, मिनटों एवं सेकण्डों में दर्शाया जाता है। विषुवत वृत्त को 0° अक्षांश कहते हैं और यह पृथ्वी को अक्षांशीय दृष्टिकोण से दो बराबर भागों में बाँटता है। विषुवत वृत्त के उत्तर में 90° के अक्षांशीय विस्तार को उत्तरी गोलार्द्ध तथा विषुवत वृत्त के दिक्षण में 90° के अक्षांशीय विस्तार को विस्तार को दिक्षणी गोलार्द्ध कहते हैं।

अक्षांश रेखा की विशेषताएँ

- ये पूर्व से पश्चिम दिशा में खींची जाती हैं।
- इनका महत्व किसी स्थान की स्थिति बतलाने में है। भूमध्य रेखा से ध्रुवों की ओर अक्षांश रेखा की लम्बाई कम हो जाती है।
- किन्हीं दो अक्षांश रेखाओं के बीच की दूरी समान होती है जो 111.13 कि.मी. की होती है।
- अक्षांश रेखाओं की कुल संख्या 181 है।
- भूमध्य रेखा सबसे बड़ी अक्षांश रेखा है जिसे वृहद वृत्त (Great Circle) भी कहा जाता है। किन्हीं दो अक्षांश रेखाओं के बीच के क्षेत्र को कटिबंध (Zone) कहते हैं।
- 1° 23 उत्तरी अक्षांश रेखा को कर्क रेखा तथा 23 2 अक्षांश रेखा को मकर रेखा कहा जाता है। 1° 2 दक्षिणी

देशांतर (Longitude) – किसी भी स्थान की प्रधान याम्योत्तर (Prime Meridian) से पूर्व या पश्चिम में कोणीय दूरी, देशांतर कहलाती है।

देशांतर रेखा की विशेषता

- 0° देशांतर को प्रधान याम्योत्तर (Prime Meridian) माना गया है, जो लंदन के पास ग्रीनविच वेधशाला से गुजरती है, इसलिए इसे ग्रीनविच रेखा भी कहते हैं।
- 0° के दोनों ओर 180° तक देशांतर रेखाएँ पाई जाती हैं, जो कुल मिलाकर 360° हैं।
- सभी देशांतर रेखाओं की लम्बाई समान होती है और सभी देशांतर रेखाएँ पृथ्वी को दो बराबर भागों में बाँटती हैं। इसलिए सभी देशांतर रेखाओं को महान वृत कहा जाता है।
- सभी देशांतर रेखाए ध्रुव पर मिलती हैं अर्थात् इन रेखाओं को उत्तर-दक्षिण दिशा में खींचा जाता है।
- भूमध्य रेखा पर देशांतर रेखाओं के बीच की दूरी अधिकतम होती है, जो 111.13 कि.मी. है। यह दूरी ध्रुवों पर कम हो जाती है।
- दो देशांतर रेखाओं के बीच की दूरी को गोरे (Gore) कहा जाता है।
- पृथ्वी 24 घंटे में अपने अक्ष पर 360° घूमती है अर्थात 1° दूरी तय करने में पृथ्वी को 4 मिनट का समय लगता है। इनका उपयोग किसी स्थान की स्थिति एवं समय दोनों के निर्धारण में किया जाता है।

समय का निर्धारण

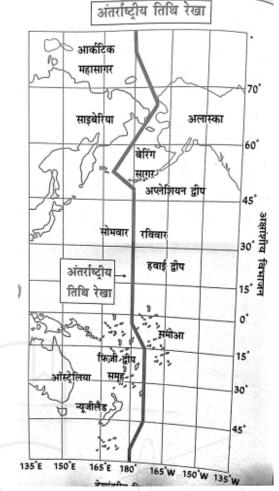
समय का निर्धारण दो प्रकार से किया जाता है

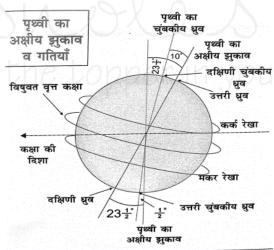
- (i) स्थानीय समय
- (ii) प्रामाणिक समय

(i) स्थानीय समय (Local Time)

- किसी स्थान का स्थानीय समय वह समय है, जिसका निर्धारण सूर्य की स्थिति के आधार पर किया जा सकता है। पृथ्वी 24 घंटे में 360° घूमती है।
- अर्थात् 1 घंटे में देशांतर के 360:24=15° अंश सूर्य के ठीक सामने से होकर जाते हैं अर्थात् 1° अंश देशांतर के अंतर के लिए स्थानीय समय में 4 मिनट का अंतर होता है।
- पृथ्वी पश्चिम से पूर्व की ओर घूमती है, इसलिए पूर्व की ओर प्रत्येक 1° देशांतर बढ़ने पर समय 4 मिनट बढ़ जाता है और इसी तरह पश्चिम जाने पर 1° देशांतर पर समय चार मिनट घट जाता है।

(ii) प्रामाणिक या मानक समय (Standard Time)


- किसी देश का प्रामाणिक समय वह समय है जो उस देश के केन्द्रीय देशांतर रेखा के आधार पर निर्धारित किया जाता है।
- भारत में 82. 1° 2 पूर्वी देशांतर रेखा, केन्द्रीय देशांतर रेखा है, जो नैनी (इलाहाबाद) से गुजरती है। इस आधार पर भारत का समय ग्रीनविच समय (GMT) से 5 घंटे 30 मिनट आगे है।


समय जोन (Time Zone)

- विश्व को 24 समय जोन में विभाजित किया गया है। यह विभाजन ग्रीनविच मीन टाइम व मानक समय में 1 घंटे (अर्थात् 15° देशांतर) के अंतराल के आधार पर है।
- ग्रीनविच योम्योत्तर 0° देशांतर पर है, जो कि ग्रीनलैण्ड व नार्वेनियन सागर व ब्रिटेन, फ्रांस, स्पेन, अल्जीरिया, माले, बुर्किनाफासो, घाना व दक्षिण अटलांटिक से गुजरता है।
- वैसे देश जिनका क्षेत्रफल अधिक है, वहां एक से अधिक समय जोन की आवश्यकता पड़ती है। जैसे- संयुक्त राज्य अमेरिका में सात समय जोन व रूस में ग्यारह समय जोन हैं।

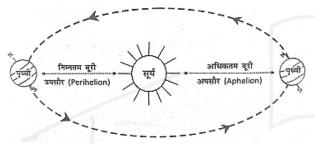
अन्तर्राष्ट्रीय तिथि रेखा (International Date Line) - 1884 में वाशिंगटन में संपन्न इंटरनेशनल मेरीडियन में 180 वें याम्योत्तर (Prime Meridian) को अन्तर्राष्ट्रीय तिथि रेखा निर्धारित किया गया। यह रेखा 180° पूर्वी व 180° पश्चिमी क्षेत्र का निर्धारण करती है।

पृथ्वी की गति

पृथ्वी की गति दो प्रकार की होती है

(i) घूर्णन गति (Rotation) (ii) परिक्रमण गति (Revolution)

(i) घूर्णन गति- पृथ्वी अपने अक्ष पर पश्चिम से पूर्व दिशा में 23 घंटे 56 मिनट और 4 सेकेंड में घूमती है। इसे पृथ्वी की घूर्णन गति कहा जाता है। इसे परिभ्रमण/दैनिक गति भी कहते हैं। इसके कारण दिन व रात की घटना होती है।



(ii) परिभ्रमण या वार्षिक गति- पृथ्वी को सूर्य की परिक्रमा करने में अर्थात् अपनी कक्षा का चक्कर लगाने में 365 दिन 5 घंटे 48 मिनट तथा 48 सेकेण्ड लगते हैं। पृथ्वी की इस गति को परिक्रमण गति कहते हैं। इस गति के कारण ऋतु परिवर्तन होते हैं।

नत अक्ष- पृथ्वी जिस अक्ष या धुरी पर घुमती है, वह अपने 1° कक्ष-तल (Plane of orbit) के साथ 66- का कोण बनाती है और पृथ्वी इस तल पर लम्बवत् रेखा से 23 झुकी रहती है। इसके कारण

- (i) दिन रात की लम्बाई में अंतर उत्पन्न होता है।
- (ii) मौसम में परिवर्तन होता है।
- (iii) वर्ष के विभिन्न समयों में परिवर्तन आता है।

पृथ्वी से सूर्य की दूरी पृथ्वी दीर्घ वृत्ताकार पथ पर सूर्य की परिक्रमा करती है, जिसके कारण सूर्य से इसकी दूरी बदलती रहती है। पृथ्वी और सूर्य के मध्य दूरी की दो स्थितियाँ हैं

(i) अपसौर (Aphelion)

- जब पृथ्वी और सूर्य के मध्य अधिकतम दूरी पायी जाती है, तो उसे अपसौर की स्थिति या सूर्योच्च कहते हैं।
- इस समय सूर्य और पृथ्वी के बीच की दूरी 15.21 करोड़
 किलोमीटर होती है। इस समय सूर्यातप अपेक्षाकृत कम होता है। यह स्थिति 4 जुलाई को होती है।

(ii) उपसौर (Perihelion)

- जब पृथ्वी और सूर्य के मध्य न्यूनतम दूरी होती है तो उसे उपसौर की स्थिति या रिवनीच कहते हैं।
- इस समय सूर्य और पृथ्वी के बीच की दूरी 14.70 करोड़ किमी होती है। यह स्थिति 3 जनवरी को होती है। अयनांत / संक्रांति (Solstice)-सूर्य की अयनरेखीय (कर्क तथा मकर रेखा) स्थिति को अयनांत कहा जाता है।

(i) ग्रीष्म अयनांत/ कर्क-संक्राति (Summer solstice)

- 21 जून को सूर्य कर्क रेखा पर लम्बवत् चमकता है, जिससे उत्तरी गोलार्द्ध में सूर्य की सबसे अधिक ऊँचाई होती है और वहाँ दिन बड़े और रातें छोटी होती हैं। इसलिए उत्तरी गोलार्द्ध में ग्रीष्म ऋतु होती है।
- इस स्थिति को कर्क संक्राति कहते हैं इसी समय दक्षिणी गोलार्द्ध में विपरीत स्थिति रहती हैं, जहाँ सूर्य तिरछा चमकता है, जिससे यहाँ रातें बड़ी और दिन छोटे होते हैं तथा गर्मी कम होने से शीत ऋतु रहती है।

(ii) शीत अयनांत/मकर संक्राति (Winter Solstice)

- 22 दिसम्बर को दक्षिणी गोलार्द्ध सूर्य के सम्मुख रहता है, जिससे सूर्य मकर रेखा (23 द.) पर लम्बवत् रहता है, 1° जिससे सूर्य मकर रेखा (23 द.) पर लम्बवत् रहता है, 2 जिससे यहाँ ग्रीष्म ऋतु रहती है।
- इस स्थिति को मकर संक्राति कहा जाता है। इस समय उत्तरी गोलार्द्ध में सूर्य तिरछा चमकता है जिससे दिन छोटे व रातें बड़ी होती हैं और गर्मी कम होने के कारण शीत ऋतु रहती है।

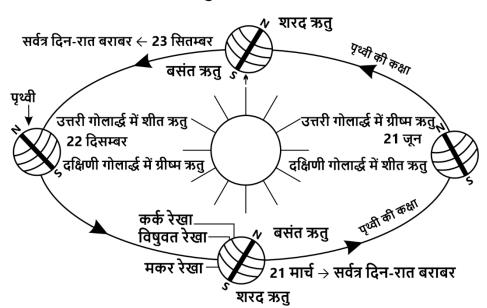
भूमध्य रेखा - भूमध्य रेखा भूमि को मध्य से बाँटने वाली रेखा है, अर्थात् पृथ्वी के ठीक बीचो बीच पश्चिम से पूर्व की ओर खींची गई रेखा है। इसे शून्य अंश (0) अक्षांश रेखा भी कहते हैं।

- भूमध्य रेखा के उत्तरी भाग को उत्तरी गोलार्ध व दक्षिणी भाग को दक्षिणी गोलार्ध कहते हैं।
- भूमध्य रेखा पर पूरे वर्ष भर दिन रात बराबर होते हैं।
- बराबर को विषुव भी कहते हैं, इसलिए भूमध्य रेखा को विषुवत रेखा भी कहते हैं। इस रेखा पर सूर्य की किरणें वर्ष भर लम्बत् या सीधी आती हैं। फलतः यहाँ दिन रात बराबर होते हैं, अर्थात् यहाँ दिन व रात 12 घण्टे की होती है।
- सूर्य भूमध्य रेखा को वर्ष में दो बार पार करता है, इसलिए दोनों गोलार्ध पर दो दिन.. दिन व रात समान होते हैं, एक 21 मार्च व दूसरा 23 सितम्बर को इन दोनों तिथियों विषुव कहते हैं। इन दोनों तिथियों पर दोनों गोलार्ध में दिन रात समान होते हैं।

विषुव (Equinox) - विषुव दो शब्दों से मिलकर बना है। इकी (Equi) और नॉक्स (Nox).इकी (Equi) का अर्थ है समान व (Nox) का अर्थ है रात्रि

विषुव दो प्रकार के होते हैं

Sun) कहा जाता है।


- (1) बसंत विषुव (Spring Equinox): 21 मार्च, इस तिथि को सूर्य भूमध्य रेखा पार करके कर्क रेखा की ओर बढ़ता है। इस समय भारत में बसंत ऋतु होती है।
- (2) शरद विषुव (Autumn Equinox): 23 सितम्बर, इस तिथि को सूर्य मकर रेखा की तरफ बढ़ता है। इस समय भारत में शरद ऋतु होती है, इसलिए इस तिथि को शरद विषवो कहते हैं। नार्वे को अर्द्ध-रात्रि का सूर्य का प्रदेश (Land of Midnight

ऋतुएँ

- वेदों में 6 ऋतुओं का वर्णन है बसंत, ग्रीष्म, वर्षा, शरद, हेमंत तथा शिशिर लेकिन ऋग्वेद में 5 ही ऋतुओं का वर्णन है, बसंत, ग्रीष्म, वर्षा, शरद, शिशिर व हेमंत ।
- नोट- यहाँ शिशिर व हेमंत को एक ही माना गया है।

ऋतु परिवर्तन चक्र

दिन की अवधि (Duration of Day)

- 21 मार्च से 23 सितंबर की अविध में उत्तरी गोलार्द्ध में सूर्य का प्रकाश 12 घंटे से अधिक समय तक रहता है, जिससे दिन बड़े व रातें छोटी होती हैं। उत्तरी ध्रुव पर दिन की अविध 6 महीने की होती है।
- 23 सितंबर से 21 मार्च की अविध में सूर्य का प्रकाश, दिक्षणी गोलार्द्ध में 12 घंटे या उससे अधिक समय तक रहता है, जिससे वहाँ दिन बड़े व रातें छोटी होती हैं। दिक्षणी ध्रुव पर दिन की अविध 6 महीने की होती है।

कर्क रेखा (Tropic of Cancer)-

यह रेखा उत्तरी गोलार्ध में भूमध्य रेखा के समानान्तर 23*
 1/2 पर खींची गई है। 21 जून को सूर्य इस रेखा पर सीधा चमकता है। इसका प्रभाव यह है कि इस तिथि को उत्तरी गोलार्ध पर दिन सबसे बड़ा और रात सबसे छोटी होती है। इसके विपरीत दक्षिणी गोलार्ध पर रात सबसे बड़ा और दिन सबसे छोटी होती है।

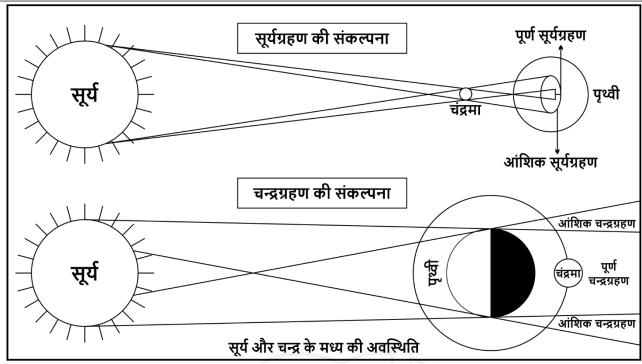
नोट कभी कभी नार्वे में आधी रात को ही सूर्य दिखाई देता है इसलिए नावे को अर्धरात्रि के सूर्य का देश (The Land of Mid Night Sun) कहा जाता है।

मकर रेखा (Tropic of Capricorn) -

- यह रेखा दक्षिणी गोलार्ध में भूमध्य रेखा के समानान्तर 23*
 1/2 पर खींची गई है।
- 22 दिसम्बर को इस रेखा पर सूर्य ठीक ऊपर चमकता है ।
- 22 दिसम्बर से 21 जून तक की स्थिति को सूर्य का उत्तरायण तथा 21 जून से २२ दिसम्बर की स्थिति को सूर्य का दक्षिणायन कहते है । इसका दो परिणाम होता है –
 - (1) दक्षिणी गोलार्ध में दिन सबसे बड़ा व रात सबसे छोटी होती है।
 - (2) उत्तरी गोलार्ध में रात सबसे बड़ा व दिन सबसे छोटी होती है।

नोट - मकर रेखा ऑस्ट्रेलिया के बीचों बीच से गुजरती है। इसलिए ऑस्ट्रेलिया में जब क्रिसमस मनाया जाता है तब वहाँ गर्मी होती है, जबिक भारत में ठण्डी होती है।

कुछ महत्वपूर्ण जानकारियाँ


- भूमध्य रेखा से उत्तरी ध्रुव और दक्षिणी ध्रुव के मध्य की कुल दूरी 90° है।
- पृथ्वी की ध्रुवीय परिधि 40008 किमी॰ है।
- एक गोलार्ध की ध्रुवीय परिधि = 40008 / 2 = 20004 किमी॰
- 0° अक्षांश से 90° उत्तरी ध्रुव की दूरी = 20004 / 2 = 10002 किमी० है।
- 1° अक्षौशीय दूरी = 10002 / 90 = 111.13 किमी॰ है।
- पृथ्वी के केन्द्र में खड़े व्यक्ति के लिए पृथ्वी के धरातल का सबसे पास स्थित बिन्दु दोनों ध्रुव होते हैं, ऐसा इसलिए होता है क्योंकि पृथ्वी चपटी होती है।
- पृथ्वी के केन्द्र से सर्वाधिक दूर बिन्दु भूमध्य के उभार पर स्थित बिन्दु है. ऐसा भूमध्य रेखीय उभार के कारण होता है।
- सह अक्षांश रेखा (Co-Latitude) किसी अक्षांश का 90° से अन्तर ही सह अक्षांश रेखा कहलाता है।

ग्रहण (Eclipse)

सूर्य ग्रहण (Solar Eclipse) – पृथ्वी द्वारा सूर्य की तथा चन्द्रमा द्वारा पृथ्वी की परिक्रमा के दौरान जब सूर्य, चन्द्रमा तथा पृथ्वी एक सीधी रेखा में आ जाते हैं, तो सूर्यग्रहण होता है। यह स्थिति अमावस्या (New Moon) को होती है, किन्तु चन्द्रमा में झुकाव के कारण प्रत्येक अमावस्या के दिन सूर्य ग्रहण नहीं लगता।

चन्द्र ग्रहण (Lunar Eclipse) – जब पृथ्वी, चन्द्रमा और सूर्य के बीच आ जाती है तो इस स्थिति को चन्द्र ग्रहण कहा जाता है। चन्द्र ग्रहण पूर्णिमा (Full Moon) को होता है, परन्तु प्रत्येक पूर्णिमा को नहीं लगता क्योंकि चन्द्रमा, पृथ्वी और सूर्य के मुकाबले प्रत्येक पूर्णिमा को उस स्थिति में नहीं होता है।

2 CHAPTER

पृथ्वी का भू-गर्भिक इतिहास

पृथ्वी के इतिहास को पांच बड़े हिस्सों में .बाँटा जाता है जिन्हें कल्प (Era) के नाम से जाना जाता है

- सेनोजोइक कल्प,
- मेसोजोइक कल्प,
- पैल्योजोइक कल्प और
- आद्य कल्प

इन कल्पों को फिर युगों में विभाजित किया जाता है और ये युग हैं-

- चतुर्थक युग,
- तृतीयक युग,
- द्वितीयक युग और
- प्रथम युग

इन युगों को भी छोटे-छोटे भागों में विभाजित किया जाता है, जिन्हें 'शक' के नाम से जाना जाता है-

	भूवैज्ञानिक काल मापक्रम					
इयान (Eons)	महाकल्प (Era)	कल्प (Period)	युग (Epoch)	आयु / आधुनिक वर्ष पहले Age/Yses before present)	जीवन/मुख्य घटनाएँ (Life / Major Events)	
		चतुर्थ कल्प	अभिनव	0 से 10,000	आधुनिक मानव	
	0	(Quatermary)	अत्यन्त नूतन	10,000 से 20 लाख वर्ष	आदिमानव	
	0210	100	h A	11 02/	(Homosapiens)	
	नवजीवन	तृतीय कल्प	अतिनूतन	20 लाख से 50 लाख	आरम्भिक मनुष्य के पूर्वज	
	(cenzozoic)	(Tertiary)	अल्पनूतन	50 लाख से 2.4 करोड़	वनमानुष, फूल वाले पौधे	
	(आज से 6.3 करोड़		अधिनूतन	2.4 करोड़ से 3.7 करोड़	और वृक्ष मनुष्य से	
	वर्ष पहले)		अदिनूतन	3.7 करोड़ से 5.8 करोड़	मिलता-जुलता वनमानुष	
			पुरानूतन	5.7 करोड़ से 6.5 करोड़	जंतु खरगोश (Rabbits	
					and hare) छोटे	
	00	-020			स्तनपायी : चूहे, आदि।	
	मध्यजीवी	क्रीटेशियस		6.5 करोड़ से 14.4	डायनोसोर का विलुप्त	
	(Mesozoic)	जुरेसिक		करोड़	होना ।	
	6.5 करोड़ से 24.5	ट्रियासिक		14.4 से 20.8 करोड़	डायनासोर का युग।	
	करोड़ वर्ष पहले स्तनपायी			20.8 से 24.5 करोड़ वर्ष	मेंढक व समुद्री कछुआ।	
	पुराजीव (24.5	परमियन		24.5 करोड़ से 28.6 वर्ष	रेंगने वाले जीवों की	
	करोड़ वर्ष से	कार्बोनिफेरस		28.6 से 36.0 करोड़ वर्ष	अधिकता	
	57.0 करोड़ वर्ष	डेवोनियन		36.0 से 40.8 करोड़	जलस्थलचर ।	
	पहले)	प्रवालवदि /		40.8 करोड़ से 43.8	पहले रेंगने वाले जंतु रीढ़	
		सिलरियन		करोड़	की हड्डी वाले पहले जीव	
		ओडविसयन		43.8 से 50.5 करोड़	स्थल व जल पर रहने वाले	
		कैम्ब्रियन		50.5 से 57.0 करोड़ वर्ष	जीव स्थल पर जीवन के	
					प्रथम चिह्नः पौधे पहली	
					मछली	

प्रागजीव (Proterezoic) आद्य महाकल्प हेडियन	पूर्व-कैब्रियन 57 करोड़ से 4 अरब 80 करोड़ वर्ष पहले			57 करोड़ से 2 अरब 50 करोड़ वर्ष 2.5 अरब से 3.8 अरब वर्ष पहले 3.8 अरब से 4.8 अरब वर्ष पहले	स्थल पर कोई जीवन नहीं जल में बिना रीढ़ की हड्डी वाले जीव। कई जोड़ो वाले जीव ब्लू-ग्रीन शैवाल: एक कोशीय जीवाणु महाद्वीप व महासागरों का निर्माण: महासागरों व वायुमंडल में कार्बनडाई आक्साइड की
तारों की उत्पत्ति सुपरनोवा बिग बैंग	5 अरब से 13.7 वर्ष पहले	ng) से तारे की उत्पत्ति-र	ri d or	5 अरब वर्ष पहले 12 अरब वर्ष पहले 13.7 अरब वर्ष पहले	अधिकता सूर्य की उत्पत्ति ब्रह्मांड की उत्पत्ति

पूर्व कैम्ब्रियन या आद्य कल्प (Precambrian or Archean Era)

- इस दौरान पृथ्वी की भूपर्पटी का निर्माण हुआ।
- इस कल्प के अन्दर केवल आग्नेय चट्टानें ही पायी गई जो बाद
 में अवसादी (Sedimentary) और कायान्तरित
 (Metamorphic) चट्टानों में बदल गई।
- इस कल्प को तीन भागों में बांटा जाता है
 - o प्रोटेरोजोइक era
 - यह काल 600 मिलियन वर्षों के बीच में आता है।
 - स्थल पर कोई जीव नहीं था।
 - केवल सागर में जीव-जन्तु पाये जाते थे।
 - आर्कियोजोइक(Archaeozoic era)
 - इस काल के अन्दर पृथ्वी पर जीवन का प्रारम्भ हो गया था।
 - जलवायु में परिवर्तन आने शुरू हो गए जिसका अनुमान चट्टानों में घास के अवशेषों से लगाया जाता है।
 - इयोजोइक (Eoazoic era)
 - इस काल के बारे में खास जानकारी नहीं मिलती है।

पुराजीवी कल्प (Palaeozoic Era)

- यह बहुत ही बड़ा कल्प है जो 600 मिलियन वर्ष पूर्व से 225 मिलियन वर्ष तक उपस्थित था।
- इस कल्प के दौरान जीयों और वनस्पतियों का विकास तेज गति से हुआ था।

 शुरू के काल में वनस्पित और जीवावशेष, इसके पश्चात मछिलयों के अवशेष और अन्त में रेंगनेवाले जीवों के अवशेष पाये गए हैं।

इसके निम्नलिखित शक हैं -

कैम्ब्रियन शक (Cambrian Period)

- ज्वालामुखी प्रक्रिया शुरू हो गई थी।
- भारत का विन्याचल पर्वत इसी युग की देन है।
- पहली मछली ने इस युग में ही जन्म लिया।

आर्दोविसियन शक (Ordovician Period)

- यह युग 500 मिलियन से 440 मिलियन वर्ष पूर्व तर्क रहा।
- इस युग में भी जमीन पर कोई जीव जन्तु नहीं थे।

सिल्यूरियन शक (Silurian Period)

- इस काल में समुद्र का स्तर उठता और गिरता रहा यह समय 440 मिलियन से 400 मिलियन वर्ष तक रहा।
- यूरोप में पर्वत निर्माण की प्रक्रिया शुरू हुई जिसके फलस्वरूप स्कैण्डीनेविया के पर्वत और स्कॉटलैण्ड पर्वत का जन्म हुआ इस प्रक्रिया को कैलिडोनियन हलचल (Caledonian Orogenesis) के नाम से भी जाना जाता है।
- बिना पत्तों के पौधों ने जमीन पर जन्म लिया।

डिवोनियन शक (Devonian Period)

- मछिलयों की और जातियों का विकास हुआ जिसमें सार्क मछिली भी थी।
- इसे मत्स्य-युग के रूप में भी जाना जाता है।
- इसकी अवधि 400 मिलियन से 350 मिलियन वर्ष तक रही।

कार्बनीफेरस शक (Carboniferous Period)

- इस काल का महत्व कोयले के निर्माण से है।
- यह युग कोयले के निर्माण का दूसरा चरण था।
- सदाबहार पेड़ों का जन्म हुआ, रेप्टाइल्स भी जमीन पर आ गए।

पार्मियन शक (Permian Period)

- सिल्युरियन काल में शुरू हुई पर्वत निर्माणकारी कैलिडोनियन हलचल इस युग तक जारी रही।
- इसे हर्सीनियन हलचल के नाम से जाना जाता है।
- इस युग में बने पर्वत फ्रांस, स्पेन और उत्तरी अमेरिका के एप्लेशियन पर्वतीय क्षेत्र में पाये जाते हैं।

मेसोजासेइक कल्प (Mesozoic Era)

- इस कल्प की अविध 225 मिलियन और 70 मिलियन वर्ष तक है।
- इसे तीन शकों में बाँटा जाता है

ट्रियासिक शक (Triassic Period)

- हिमालय और आल्पस की जगह टेशीस सागर उपस्थित था
- पैन्जिया नाम के महाद्वीप का विभाजन होना शुरू हो गया था
- इस काल को रेंगने वाले जीवों का काल कहा जाता है।

जुरैसिक शक (Jurassic Period)

- इस काल में रेंगने वाले रीढ विहीन जीवों की अधिकता थी।
- डाइनोसार (Dinosaurs) का आकार बहुत बड़ा हो गया।

क्रिटैशियस शक (Cretaceous Period)

- इस काल में कोयले का निर्माण हुआ।
- भारत के प्रायद्वीपीय भाग पर लावे का जमाव इसी काल में हुआ था।
- फूल वाले पौधों का भी विकास हुआ।

सेनोजोइक कल्प (Cenozoic Era)

- सेनोजोइक कल्प को टर्शियरी युग (Tertiary Period) के नाम से भी जाना गया है।
- इस युग को पाँच शकों में बाँटा जाता है

पैलियोसीन युग (Palaeocene Epoch)

- इस अविध का विस्तार 70 मिलियन से 60 मिलियन वर्ष तक रहा।
- डाइनोसार खत्म हो चुके थे।

इयोसीन युग (Eocene Epoch)

- अटलांटिक महासागर ने अपना आज का आकार इसी समय ही धारण कर लिया था।
- इसकी अवधि 60 मिलियन से 40 मिलियन वर्ष तक रही।

ओलिगोसीन युग (Oligocene Apoch)

- पर्वत निर्माणकारी शक्तियां और ज्वालामुखी प्रक्रिया सक्रिय ले गयी जिससे हिमालय, आल्पस तथा राकीज पर्वत मालाओं का विकास हुआ।
- इस युग का विस्तार 40 मिलियन से 25 मिलियन वर्ष तक रहा।

मायोसीन युग (Miocene Epoch)

- फूल वाले पौधों का विकास आज की तरह के पौधों के जैसा हो गया।
- इसकी अवधि 25 मिलियन से 10 मिलियन वर्ष तक रही।

प्लायोसीन युग (Pliocene Epoch)

- पृथ्वी ने अपना आकार ग्रहण कर लिया।
- जलवायु ठंडी हो गयी थी।
- इसकी अवधि 10 मिलियन वर्ष से 1 मिलियन वर्ष तक है।

चतुर्थक शक (Quarternary Period)

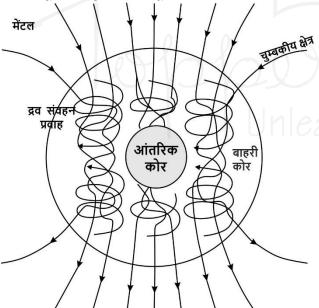
- यह अवधि 10 लाख वर्ष से शुरू होकर अभी तक जारी है।
- इसे दो युगों (Epoch) में बांटा जाता है।

प्लीयोटोसीन युग (Pleistocene Epoch)

- इसे हिमयुग के नाम से जाना जाता है।
- इस अविध में तापमान कम होने के कारण करीब करीब सारे महाद्वीप बर्फ से ढक गए जिसमे दक्षिणी अमेरिका, उत्तरी अमेरिका, यूरोप, एशिया, एण्टार्कटिका और दक्षिणी अफ्रीका शामिल था।
- यूरोप और उत्तरी अमेरिका में चार छोटे-छोटे हिमयुगों का आगमन हुआ था।

आधुनिक युग (Recent Epoch)

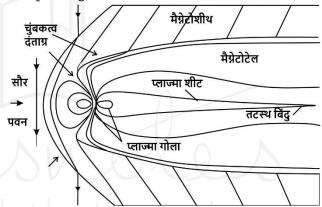
- यह काल आज से 10 हजार वर्ष पहले शुरू हुआ था।
- इस काल के दौरान मानव (Hormosapiens) का आगमन हुआ था।


3 CHAPTER

पृथ्वी का चुम्बकीय क्षेत्र

डायनमो प्रभाव

- डायनेमो सिद्धांत उस प्रक्रिया का वर्णन करता है जिसके माध्यम से एक घूर्णन, संवहन और विद्युत प्रवाहकीय द्रव खगोलीय समय के पैमाने पर एक चुंबकीय क्षेत्र बनाए रख सकता है। एक डायनेमो को पृथ्वी के चुंबकीय क्षेत्र और बुध और जोवियन ग्रहों के चुंबकीय क्षेत्र का स्रोत माना जाता है।
- यह एक सिद्धांत है जो एक डायनेमो के संदर्भ में पृथ्वी के मुख्य चुंबकत्व की उत्पत्ति की व्याख्या करता है।
- इस डायनेमो क्रियाविधि में, पृथ्वी के बाहरी कोर में पहले से मौजूद द्रव गति कमजोर चुंबकीय क्षेत्र में वस्तु) तरल
- लोहा (का संचालन करती है और विदयत प्रवाह उत्पन्न करती है। विद्युत प्रवाह एक चुंबकीय क्षेत्र उत्पन्न करता है जो द्वितीयक चुंबकीय क्षेत्र बनाने के लिए द्रव गति के साथ भी संपर्क करता है।
- एक साथ, दो क्षेत्र मूल से अधिक मजबूत होते हैं और पृथ्वी के घूर्णन की धुरी के साथ घूमते हैं।


मैगनस प्रभावः मैगनस प्रभाव किसी तरल में चक्रण (या तो बेलन या गोले) से संबंधित है • जब कोई फुटबॉल खिलाड़ी बॉल ऑफ-सेंटर पर रखता है तो यह मैगनस प्रभाव के कारण गेंद को स्पिन करने का कारण बनता है।

मैग्नेटोस्फीयर

 हमारे ग्रह में एक चुंबकीय क्षेत्र है। विभिन्न परतों के बीच हम एक परत पाते हैं जो पूरी पृथ्वी के चुंबकीय क्षेत्र के साथ एक है। इस परत को कहा जाता है मैग्नेटोस्फीयर।

पृथ्वी के चुंबकीयमंडल क्षेत्र का निर्माण:

- पृथ्वी के चारों ओर अंतिरक्ष में मौजूद प्लाज़्मा के जमाव का मुख्य स्रोत सूर्य है। सूर्य से उत्सर्जित होने वाला प्लाज़्मा सौर पवन) Solar Wind) के रूप में पृथ्वी की ओर गित करता है।
- इस प्लाज़्मा की गित 300-1500 किमी/सेकंड के बीच होती है, जो अपने साथ सौर चुंबकीय क्षेत्र (Solar Magnetic Field) भी लाता है। इस सौर चुंबकीय क्षेत्र को अंतर-ग्रह चुंबकीय क्षेत्र या 'इंटरप्लेनेटरी मैग्नेटिक फील्ड' (Interplanetary Magnetic Field-IMF) कहा जाता है।
- पृथ्वी के चुंबकीय क्षेत्र तथा IMF की अंतर्क्रिया की वज़ह से पृथ्वी के चुंबकीयमंडल क्षेत्र का निर्माण होता है।

पृथ्वी के चुंबकीयमंडल की संरचना:

(बो शॉक) Bow Shock

 पृथ्वी का चुंबकीयमंडल क्षेत्र सौर पवन से टकराने के कारण 'बो शॉक 'का निर्माण होता है।

(मैग्नेटोपॉज़) Magnetopause

 यह पृथ्वी के चुंबकीय क्षेत्र और सौर पवन के बीच की सीमा है।

(मैग्नेटोसिएथ) Magnetosheath:

 यह पृथ्वी के चुंबकीय क्षेत्र और मैग्नेटोपॉज के बीच की सीमा है।

(नार्थर्न टेल लोब) Northern tail lobe:

 नार्थर्न टेल लोब में चुंबकीय क्षेत्र की रेखाएँ पृथ्वी की ओर होती है।

(साउथर्न टेल लोब) Southern tail lobe:

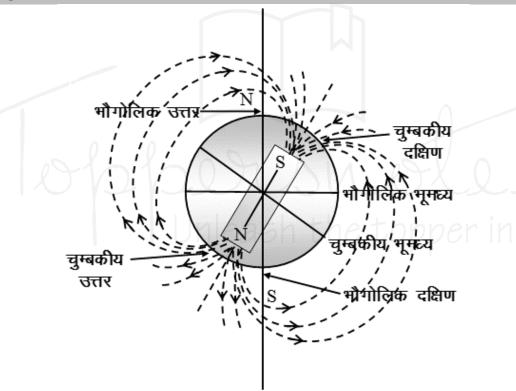
 साउथर्न टेल लोब में चुंबकीय क्षेत्र की रेखाएँ पृथ्वी से दूर होती हैं।

(प्लाज़्मास्फेयर) Plasmasphere:

 चुंबकीयमंडल के अंदर का वह क्षेत्र जो आयनमंडल से प्रवाहित होने वाली प्लाज्मा को अवशोषित करता है।

भारतीय भू-चुंबकत्त्व संस्थान (Indian Institute of Geomagnetism-IIG):

- भारतीय भू-चुंबकत्त्व संस्थान भारत सरकार के विज्ञान एवं प्रौद्योगिकी विभाग द्वारा स्थापित एक स्वायत्त अनुसंधान संस्थान है।
- इसकी स्थापना वर्ष 1971 में की गई थी और इसका मुख्यालय मुंबई) महाराष्ट्र (में स्थित है।
- ॥G का उद्देश्य भू-चुंबकत्व के क्षेत्र में गुणवत्तापूर्ण अनुसंधान करना और वैश्विक स्तर पर भारत को एक मानक ज्ञान संसाधन केंद्र के रूप में स्थापित करना है।


 ॥G जियोमैग्नेटिज्म और संबद्ध क्षेत्रों जैसे -सॉलिड अर्थ जियोमैग्नेटिज्म/जियोफिज़िक्स, मैग्नेटोस्फीयर, स्पेस तथा एटमॉस्फेरिक साइंसेज़ आदि में बुनियादी अनुसंधानों का आयोजन करता है।

जियोमैग्नेटिक स्टॉर्म

- कोरोनल मास के कारण पृथ्वी के चुंबकीय क्षेत्र की ताकत
 में तेजी से गिरावट आती है
- आयनमंडल विकृत हो जाता है, लंबी दूरी का रेडियो संचार मुश्किल हो जाता है।
- GPS जैसी उपग्रह संचार प्रणाली को बाधित करता है।
- इलेक्ट्रिक पावर ग्रिड में वोल्टेज में अत्यधिक वृद्धि से ब्लैकआउट हो सकता है।

वैन एलन विकिरण बेल्ट:सौर हवाओं के कारण उत्पन्न होने वाले अत्यधिक आवेशित कणों का क्षेत्र है

भूचुंबकीय ध्रुव

- ऐसे बिंदु जहां पृथ्वी की सतह पृथ्वी के केंद्र में स्थित एक बार चुंबक की धुरी से मिलती है।
- प्रत्येक गोलार्द्ध में एक ऐसा ध्रुव होता है- " भूचुंबकीय उत्तरी ध्रुव " और " भूचुंबकीय दक्षिणी ध्रुव"।

चुंबकीय ध्रुव

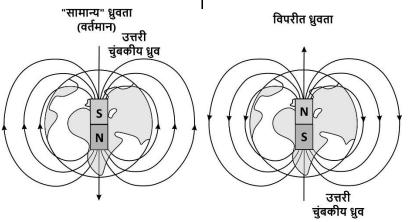
- चुंबकीय ध्रुव नित के उद्धिधर झुकाव को प्रदर्शित करता है
 ध्यातव्य है कि चुंबकीय नित क्षैतिज समतल एवं पृथ्वी के चुंबकीय क्षेत्र की दिशा में बनने वाला कोण है। वस्तुत: पृथ्वी एक बड़े चुंबक की भाँति कार्य करती है।
- पृथ्वी के गर्भ में ठोस आंतिरक कोर है जिसके चारों ओर बाह्य कोर द्रव अवस्था में है जिसमें लौह एवं निकिल जैसे भारी तत्त्व पाए जाते हैं।
- पृथ्वी के घूर्णन के कारण पृथ्वी का द्रव अवस्था वाला बाह्य कोर इलेक्ट्रिक धारा उत्पन्न करता है। इससे चुंबकीय क्षेत्र का निर्माण होता है।
- ध्रुवों पर जहाँ से ये चुंबकीय धाराएँ प्रवाहित होती हैं वहीं चुंबकीय क्षेत्र का प्रभाव सर्वाधिक होता है। इन्हीं स्थानों को चुंबकीय ध्रुव कहा जाता है।

- पृथ्वी के दो चुंबकीय ध्रुव हैं यथा उत्तरी चुंबकीय ध्रुव तथा दक्षिणी चुंबकीय ध्रुव तथा कंपास की सूई हमेशा उत्तरी चुंबकीय ध्रुव की ओर संकेत करती है।
- गौरतलब है कि पृथ्वी के चुंबकीय ध्रुव (उत्तरी व दक्षिणी)
 पृथ्वी के वास्तविक भौगोलिक ध्रुवों से भिन्न होते हैं।
- पृथ्वी के वास्तविक भौगोलिक उत्तरी ध्रुव तथा चुंबकीय उत्तरी ध्रुव के मध्य बनने वाले कोण को चुंबकीय झुकाव (Magnetice Declination) कहते हैं।

नमन कोण) Angle of Dip): किसी स्थान पर पृथ्वी का सम्पूर्ण चुम्बकीय क्षेत्र क्षेतिज तल के साथ जितना कोण बनाता है, उसे उस स्थान का नमन कोण कहते हैं। पृथ्वी के ध्रुव पर नमन कोण का मान 90° तथा विषुवत रेखा पर 0° होता है।

प्रमुख बिंदु

- चुंबकीय ध्रुवों पर, नित कोण °90 होता है।
- नित कोण स्थानीय चुंबकीय क्षेत्र और क्षैतिज के बीच चुंबकीय उत्तर के साथ संरेखित एक ऊर्ध्वाधर तल में कोण है।
- इसे चुंबकीय नित या चुंबकीय झकाव के रूप में भी जाना जाता है।
- दक्षिण चुंबकीय ध्रुव से डिप रेंज (90-) डिग्री और उत्तरी चुंबकीय ध्रुव (90 +) डिग्री में है।
- नित कोण में भिन्नता पथ्वी के चुंबकीय क्षेत्र के बारे में जानकारी प्रदान करती है।
- यह क्षेत्र मानचित्रण और भूवैज्ञानिक क्षेत्र अनुप्रयोगों के क्षेत्र में एक महत्वपूर्ण भूमिका निभाता है।
- शून्य-डुबकी बिंदुओं के स्थान को चुंबकीय भूमध्य रेखा या अनितिक अक्ष कहा जाता है।
- उदासीन् बिन्दुओं बिंदु जहाँ बार चुंबक के कारण क्षेत्र पृथ्वी के चुंबकीय क्षेत्र के क्षैतिज घटक द्वारा पूरी तरह से बेअसर हो सकती है।
- उत्तरी चुंबकीय ध्रुव पृथ्वी के भौगोलिक उत्तरी ध्रुव के पास का ध्रुव।
- दक्षिण चुंबकीय ध्रुव -पृथ्वी के भौगोलिक दक्षिणी ध्रुव के पास का ध्रुव।
- पृथ्वी के तीन चुंबकीय तत्व हैं: 1. चुंबकीय द्विप्पात 2.
 पृथ्वी के चुंबकीय क्षेत्र का क्षैतिज घटक 3. नंति या चुंबकीय झुकाव का कोण


- पृथ्वी के घूर्णन अक्ष से लगभग 11 डिग्री के कोण पर झुका हुआ है।
- उत्तरी ध्रुव की तरह, दक्षिणी ध्रुव में भी चुंबकीय और भूचुंबकीय ध्रुव होते हैं जो 90°S के भौगोलिक दक्षिणी ध्रुव से भिन्न होते हैं। ऑस्ट्रेलियाई अंटार्कटिक डिवीजन के अनुसार, चुंबकीय दक्षिण ध्रुव पृथ्वी की सतह पर स्थित है, जहां "पृथ्वी के चुंबकीय क्षेत्र की दिशा खड़ी ऊपर की ओर है।" यह एक चुंबकीय डुबकी बनाता है जो चुंबकीय दक्षिण ध्रुव पर 90° है। यह स्थान प्रति वर्ष लगभग 3 मील (5 किमी) चलता है और 2007 में यह 64.497 aboutS और 137.684 .E पर स्थित था।
- जियोमैग्नेटिक साउथ पोल को ऑस्ट्रेलियाई अंटार्कटिक डिवीजन द्वारा पृथ्वी की सतह और पृथ्वी के केंद्र की शुरुआत और पृथ्वी के चुंबकीय क्षेत्र की शुरुआत का अनुमान लगाने वाले चुंबकीय द्विध्रुवीय अक्ष के बीच के अंतर के बिंदु के रूप में परिभाषित किया गया है। जियोमैग्नेटिक साउथ पोल का अनुमान 79.74 PS और 108.22 PE पर है। यह स्थान वोस्तोक स्टेशन के पास है, जो एक रूसी शोध चौकी है।

भूचुंबकीय उत्क्रमण

- किसी ग्रह के चुंबकीय क्षेत्र में बदलाव जिसमें चुंबकीय उत्तरी और दक्षिणी ध्रव उलट जाते हैं।
- पुरा- चुंबकत्व के अनुसार, पिछले 20 मिलियन वर्षों में चुंबकीय उत्तर और दक्षिण हर 200,000 से 300,000 वर्षों में बदले हैं।
- उत्क्रमण, सूर्य जिसका चुंबकीय क्षेत्र हर 11 साल में उलट जाता है, के विपरीत 'आविधक' नहीं है।
- उत्क्रमण के दौरान, चुंबकीय ध्रुव अजीब अक्षांशों पर दिखाई देते हैं।

सामान्य और विपरीत ध्रुवता:

- सामान्य ध्रुवता: पृथ्वी का उत्तरी चुंबकीय ध्रुव = चुंबकीय क्षेत्र का दक्षिणी ध्रुव।
- विपरीत ध्रुवता: पृथ्वी का उत्तरी चुंबकीय ध्रुव = चुंबकीय क्षेत्र का उत्तरी ध्रुव।

