

हरियाणा लोक सेवा आयोग (HPSC)

Mathematics

Volume - 3

CONTENTS

Mathematics			
Part II- Graduation Standard (Graduation Standard)			
1.	Vector Calculus	1	
	 Problems with Solutions 		
2.	Three Dimensional Geometry	27	
	• 3-D Geometry		
	 Directions ratios and cosines 		
	Projectile		
	Plane		
	Straight Line		
	• Sphere		
	• Cone		
	Cylinder		
3.	Statics	82	
	 Equilibrium of Co-planner forces 		
	Friction		
	Moments		
	Catenary		
	Virtual Work		
4.	Dynamics	99	
	 Velocity and Acceleration 		
	 Angular Velocity and Angular Acceleration 		
	 Radial and Transverse velocity and acceleration 		
	 Velocities and acceleration along with tangential 		
	and normal directions		
	Simple Harmonic Motion		
	The rectilinear motion under variable laws		
	 Hook's law and problems 		
	Projectiles		

Part- III (Post Graduation Standard)		
1.	Linear Algebra and Metric Space	115
	Vector Space	
	Linear Dependence and Independence	
	• Bases	
	Linear Transformation	
	Matrix Representation of Transformation	
	Cayley- Hamilton Theorem	
	Metric Space	
2.	Integral Transform and Special Function	154
	Hyper-geometric function	
	Orthogonal Functions	
	Legendre's Polynomial	
	Bessel's Function	
	Laplace Transform	
	Fourier Cosine transform	
	Fourier Sine Transform	
3.	Differential Geometry and Tensors	171
	Curves in Space	
	Curvature	
	Torsion	
	Serret-Frenet Formula	
	• Skew	
	 Helices Osculating circle and sphere 	
	Types of Tensors	
	Algebra of Tensors	
	Christoffel's symbol	
	Covariant Differentiation	
	Equation of Geodesics	
4.	Numerical analysis	188
	Fundamental Theorem for difference calculus	
	Factorial Function	
	Reciprocal Function	

	 Interpolation Newton's-Gregory forward and backward interpolation Gauss Forward and Backward interpolation 	
	 Starling's interpolation formula 	
	 Bessel's interpolation formula 	
	 Newton's Divide difference interpolation 	
	 Lagrange's interpolation formula 	
5.	Optimization Technique	219
	 Linear Programming Problems 	
	Simplex Method	
	Duality	
	 Convex Sets and their properties 	
	 Assignment Problem 	
	 Transportation Problems 	
	Game Theory	

Statics

1. समतलीय वाली का संतुलन:-(Equilibrium of Copbnar Forces) A RIGHT 211 RIDZIDEAUI (Equilibrium):-थादे किसी । पिछ पर लगे दी या दें। यो अधिक खल उसे निरामावला में रखेती दे बल सामायस्या में कहलाते हैं। रम पिठड के रिक ही या मिन्मर बिन्दुओं पर कॉर्परत हेर बल शाम्यम्ब्या में होंगे, यदि (1) उनका भरिमाण समान है। (1) विपरित दिशा में हो (गां) रज ही सरल रेखा के अनुदिश हो। B समततीय बल निकाय का रक रुवे बल युग्त में समानयन :-" किसी पिछ के विभिन्न विन्दु से पर कियावील समतलीय वास लिकाग को उनके अमतल में रिपत किसी स्केरता विन्दु पर कियावील रक बल रव बल - युग्म में आमानीत किया आ सकता है।" => ATION 200 GC 1005 & 121200 100-431 A, A, A, A, A, A, A, VC ginal: introlly and P. P. P. Py --- igitinthe El and of wind में एक स्वेच्छा बिन्दू Oan मेरल बिन्दु तथा OX, OY निर्देशी अंश of at A, A, A, A, A, --- on the station and the (x, y), (x, y) (x, y) (X4 84) -- El P1 P2 P3 Py --- अलो के निईंशी अर्था के समान्ता वियोजित आग 4714 RT: X, ¥, X2 Y2, X3 Y3, X4 Y4 --- ET

Toppersure Unleash the topper in you

A, पर बल X, और OUR OX' &
3-5621 (मेरावरीत बल X, स्क
बसायुर्ग अंगरे हैं। एंसाबा दिखिणावर्ठ
आबूर्ग -4, X, É!
इसी प्रकार A, पर बल Y, और OU
OY' के अनुष्टिक खल Y, स्क बल
2576 बनते हैं। एंसाबा वामावत आखुर्थ
3.4 Y, हा।
3.4 Y, हा।
3.7 Y, हा!
3.7 Y,
$$\frac{1}{2}$$

3.7 Y, $\frac{1}{2}$
3.7 Y, $\frac{1}$

(11) 6, मूल बिन्दु 0 की स्थिति पर जिन्नेर कारता है जबकि राजिनेर नहीं काता है। मूल विन्दु o की उन्यत्र बिन्दु O(h, K) पर ह्यांनातीत करते पर यदि नए खल युग्म का आखूकी 61 हो तो $C_{1} = \{ (x_{1} - h) Y_{1} - (y_{1} - K) X_{1} \}$ $G' = \xi (x, Y, -hY, -y, X, +KX)$ $G' = G - h \leq Y_1 + K \leq X_1$ G' = G - h Ry + K Rx(111) किसी पिठड (भी साम्पावल्या मे नहीं हो) के विकिन्न विन्दु औ पर क्रियाशील समत्तीय बल जिन्मप का या ती रक वल या रक वल-युग्म में समानाज किया जा सकता है IRUIA: UN R=0, G70 इत रियोरि में जिनाय केवल मात्र रक बत युग्त अमे ही समाहीत हा जाता है। I 12412: Na R 70, 0, -0 इन खियाते में जिन्माय देवत मात्र रक्ष भारतामी खल में समानीत हाजाता है। (iv) पारेणामी का समीकारण:-21दि कोई स्वेन्द्र खिन्दु (h, K) हे तथा इस खिन्दु के साथे या सगत बत आंध्रे दें ही ती $G' = G - hRy + KR_{2}$ भरन्तु भरिवासी की क्रियारेखा पर स्थित किसी बिन्दु के सापेश बर्ला के आंधुनी का बीगीय थींग केन्य होता है। क्रिपोत $C_1 = 0$ $G - hRy + kR_x = 0$ $h_{Ry} - K_{Rx} = G$ 317! (h, K) of lang 42 JC Ry + yRx = Ch of the yearst का जनीबट ममीकरन है।

() तीन बली के अन्तर्गत रक पिठड की साम्यवस्था:-(Equilibrium of a Rigid body Under Three Forces) 11याद किसी पिठड पर क्रियाशील तीन समतलीय खल उसे साम्यावाया में रखी हो तो दें बल रक बिन्दु पर मिलेगे या समानार होंगे।" =)माना रज दृढ़ पिठड के बिन्दु A, B और C पर तीन समततीय बल P.Q और R कियासीत ह किसके अंतरीत पिंठा साम्यवाचा मही I स्थिति - अब P और Q की कियाबीत रेखाई संगानार तहीं हो :-पत P और a की कियारीन रेखाए संमान्ता नहीं है ते थे राजा बिन्दु 092 मिलेगी। तीनी वल साम्यावत्या में होने के काणा खिन्द् 0 दी सांपेश तीनी बलो दे Ď आधुली का शौग श्रुच्य होगा अत. उके आपेश R Pan आधुर्ग + Qan आधुर्ग + Ran आधुर्ग =0 अर्थता विन्दु 0 के सांपेश R का आखूनी अन्य है। परना R701 इसालिए R की क्रियासील रखा विन्दु O के गुजरेगी अतः तीनी अल P, Q, R रिक ही विन्द् O मे गुजरेगे। 11 स्विपति -> जव P अंगिर Q की कियादील रेखाएँ भंजान्तर हा :-रादि P और Q समान्ता बेल हैं तो उनका परिलामी भी उनके timinac EIJII | 42-03 P, Q an R timilia un fi E, आगः P और Q का परिवामी R से संतुतित होगा। utonमत: R, P site a of utonal & arrar an autor to में होगा। प्रतः Rath क्रियाप्रील रेखा असे P ऑर Q वर्मी कितासील रखाओं के समान्ता होगी। निष्कर्ष => कोई पिछ तीन समतलीय खली के अंतर्गत साम्यवस्थ में हो तो वे बल या ते लंगामी होगे या किर समान्तर होगे।

oles

(२.) किसी हुद् पिन्ड पर कियाबील एक समत्वीय बल निकाय काम्पावरण में होगा, यदि तीन अन्तरेखीय खिन्दु झो के प्रत्रेक के पारित खला के आंध्यूने का बीजीय योग श्राज्य हो।

=> माना रक् मूल बिन्दु के सापेक्षा अन्य की बिन्दु औ के निर्देशाक (h, k) a(h', k') El ! तीनी विन्दू असरेबीय है। $\frac{h}{K} \neq \frac{h}{K}$ - - - (I) $hk' - h'k \neq 0$ (0,0) .(h,K) तया (h',K') के पारित दिए गए बली के आधुनी के बीलीय योग क्रम्याः. Cr., Gr. ऑर Cr3 ह। $C_1 = 0$ $G_2 = G - hRy + KR_x = 0 - - - 3$ - - ·(4) $C_{13} = C_1 - h'Ry + KRx = 0$ समी. 0 0 अगर 3 द - hRy+KRx=0 -h'Ry+k'Rx=0हल करने पर $(hk' - h'k)R_{3c} = 0$ (h'k - h'k) Ry =0 ition with the A hk'-h'k = 0 317; Rx=0 II Ry=0

Gr=0 अतः अल जिसाय साम्पावला में हैं। (3) किसी दृढ़ जिन्ड पर क्रियाद्यील समतलीय अल जिसाय साम्यावल्या मे हीगा यदि दें। जिन्न खिन्दुआं कै, प्रत्रीय के सांभेद्या आंखुनेकिंग बीतीय योग र्डान्य हे, ऑर जिसी दी दिशा के अनुब्लि जो उन बिन्दुओं के जिलाने वाली रेखा के लम्बतत नहीं ह बलों के वियोजित आगी का बीजीय शौग क्रान्य है।

loppersnotes

> परिकाला:- "तब दा पिछ परस्पर स्पर्ध करते ही, ते पिठ्डो का मह गूग जिसके कारणा उनके स्पत्र बिन्दु पर रूक रेसा स्पर्शीय प्रतिरोधी बात उसका हैता ह, तो रक पिठड की दुसरे पर फिसलने या मति कार्व से बीकता है 'हार्वना' कह लाता है। और उस बल को ' रार्फ्रा आल' कहते हा " B EIGOT of JOHR: - (Kinds of Friction) (1) र्चोतिक ध्रहीग :- प्राव दी पिन्ड परस्पर स्पर्श करते हुए आग्रियावम्पा में ही, तो उनके सार्वा जिन्दु पर उसना धर्मना, स्थेतिक धर्मना कार्रलाणा (1) सीमान्त रार्धन :- जब स्क पिन्ड दुसर पिन्ड पर से प्रेसलने की अवस्था में ही अर्थात सीमान्त सन्तुलन की अवस्था ही, ती उनने भयही छिन्दू पर उत्पन्न घर्षना आधिकतम होगा, जिसे सीमानत घर्षन कहते हैं। (11:) गतिक राषेठा :- जब स्क पिठड दूसरे पिठड पर किसत रहा हो ती ऐसी अवस्था में उनके स्पर्श बिन्दु घर उत्पन्न खर्बन की गातिक धर्मना कहते हैं। (C) ELGOT - THOT :- (Anale of Friction) अब रक पिन्ड दूसरे पिन्ड के सम्पर्क में हो तो उनके स्पर्की बिन्दु पर परिणामी भ्रतिक्रिया खल खंव आफलम्ब भ्रतिक्रिया बल के म्हण्य का कींग धार्वन - कोंग कारलाता है जिसे 2 से खक्त करते है। Jan λ = - परम धर्षन बल = F -- 1 => धार्षठा गुंगांक :- जब स्क पिठड दुसरे पिठड के सम्पर्क में सीमानत सन्ततन में हा तो उनके स्पर्श बिन्दु पर भरम खर्वन वत व आमेतम्ब भ्रतिक्रिया में रक जिस्तित अनुपाता होता है। इस अनुपात को ही धर्षठा गुगान जाहते हैं इग्रिये , 1 री व्यक्त कार्त ह $\mathcal{M} = \frac{-\sqrt{2}}{347} \frac{\sqrt{6}}{\sqrt{6}} \frac{\sqrt{6}}$ F=UR

Note: 1 मान मान परिव 0 अरेट 1 के मल्प होता है। 0 < 4 < 1 (i) got higher (Smooth) thos of Tak U=0 समी. () व () से U = tan 2 aton jointy = tan (aton allor) D ELGOT & TOTEM (Laws of friction):-Law I. अब दो पिन्ड परत्यर स्पर्श करते हैं तो स्पर्श बिन्दु पर धार्वन खल की दिया। स्पर्श बिन्दु की गाते की दिया के विपरित होती। सतलन की अवस्था में उसका परिमाल केवल उतना होता ह LawII. ाजिला कि पिठड को जातिमान होने से रोकने की पर्याप ही। LawIII. गरम धर्षन बाल और पिनड की आफ्रेलम्स प्रतिक्रिया का अन्यात अर्थात धार्वन गुनाक आनित्वत होता है, भी फिठ्डी के पदार्थी की मंद्राति पर जिर्कार करता है। Law IV. чारम धार्मन स्पर्श करने वाले प्रव्ते के आधार पर जिन्ते नहीं काता जब तक कि आजिलम्ब प्रतिक्रिंग अपरिवर्तित रहती ही Law V. लंब पिठेड अतिमान अवल्या में हो तब दावेठा गुंगाक प्रका भिरिमान पिठा की स्टीतिक अवस्था की अपेशा जुछ कम हीता है। . . पिठ्डों के दीग पर जिर्केर लहीं करता) (E) आनत समतल पर सीमान्त संतुलन :-" किसी ओनत समतल पर र खा रक फिल्ड अपने फिसलने की अवस्था में हो तो समतल का क्षीतिल से अनाव कौरा = धर्षन कौरा

 $\lambda = \alpha$

11