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BASICS OF ELECTROMAGNETIC THEORY

& MAXWELL'S EQUATIONS

THEORY

1.1 VEcTOR ALGEBRA

1.1.1

There are 3-types of product
() Dot Product

(i) Cross Product

(1)  Triple Product

Vector Product

(i) Dot Product

The Dot Product of two Vectors A and B is given by,

A
0 B
A‘B = A-B-cos
Let, A= Ad,+Aa, +Aa,
B = Bia, +B,a, +B,a,
Thus, Dot product is given by
A'B = AB,+A B, +A B,

Dot product is a Scalar quantity.
(ii) Cross Product

The Cross product of two Vectors A and B is given by
AxB = |Al-|Blsin64_
where, a, = Normal unit vector. (Normal unit vector to AB plane)

AxB = a, (AyBZ —AZBy)—éy (A.B,-A,B, )+4, (AXBy —BXAy)
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It is represented in the determinant form as given below

AxB

X y z
, . A, A, A,
Le. AxB = y

B, B, B

X y z
Cross product is a Vector quantity.
(iii) Triple Product

Ax(BxC) = B(C.A)- C(AB)

1.1.2 Vector Operators
(1) Gradient Operator is VV of scalar V

(2) Divergence operator is YV of vector
(3) Curl vxA of vector A

(4) Laplacian V2V of scalar V

(1) Gradient (y; operator) : Operator is given by VV

N N
Here del operator V = s +g v T
Gradient is applicable for Scalar fields only.
It given the Rate of change of Scalar field along the different co-ordinate axes.

Example : Gradient of potential field V is given by

v, V. oV,
VV = gax‘f‘ga},‘f‘a—az

Z

where, V is a Scalar field.

Note : Gradient of a potential field gives the electric field.

1c., E = V-V, where, E is the electric field intensity.

Note : Gradient of a scalar field is a Vector quantity.

(2) Divergence : It is applicable for a Vector ficld. Divergence of a Vector field gives the flux coming
out of a closed surface, when volume of the surface shrinks to zero.

Let, D = D.a, +Dya, +D,a, = Electric flux density
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iéx +iéy +352 -(D,d, +Dya, +D,4,)
ox oy oz

S _— iDXJrﬁD +3DZ
V-D = oy ¥ oz

The above equation represent the divergence of a Vector quantity (D).
Note : Divergence of a Vector field is a Scalar field.

Example : V.D=p, = Charge density

(3) Curl of a Vector field : The curl of a Vector field.

= Aja, +Aja, +Aja, is given by

o]

VXA T oy 7 & x oz x Yooy
For example, The curl of Magnetic field intensity (H) represented as
g = Haa,+Ha, +H,a,

Can be given by determinant form as shown below

AX Ay é\'Z
o 0
VxH = |ox oy oz
H, H, H,

2 L o (Lo Dy o Lt D
oy oz’ Ox 0z Y

Note : Curl of a Vector field is a Vector quantity.

Example : v« =] = Current density.

(4) Laplacian (V?) : Laplacian of scalar V is divergence of gradient of scalar V
Vv = vvV = Divergence (Gradient V)

For Cartesian Coordinate

. OV  0°V OV
Laplacian VV = 5o oy ton

Note : A vector A is said to be solenoidal if its divergence is zero
VA =0
Example : Magnetic field is solenoidal

VB =0

(QA —ﬁijaX —[EAZ —ﬁAXjay {QA —ﬁAXjaZ
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A vector A is said to be irrotational if its curl is zero.

VxA =0
Example : In static environment Electric field is irrotational or conservative
VxE =0
. A scalar field is said to be harmonic in given region if its laplacian is zero.
vy =0
. Divergence of curl is always zero
V.(VxA) =0
. Curl of gradient is always zero
Vx(VA) =0

1.1.3 Divergence Theorem

According the divergence theorem, “The surface integral of a vector field over a closed surface S is equal
to the Volume integral of divergence of the Vector field”.

(ﬁﬁcﬁ v I?ﬁ dv

1.1.4 Stokes Theorem

According to this theorem, “The Line integral of a Vector field over a closed path is equal to the Surface
integral of curl of the Vector field”.

G0 _ [(9xH).S

S

Example 1 : Given vector field A =xyd, +x%_ . Find CfA'dl circulation by stoke’s theorem over path

given below.

y
3
' C
1
013 243
Solution :
Stoke’s theorem $Adl = [[(VxA)ds
a, a, a, a, a, a,
0 90 0 | o @&
Curl vazaxﬁyazzaxayaz
Ax Ay Az Xy X2 O
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0 0
S0-Z6) |+ Low-0)a, {&(xz)—g(xy)}az

VxA = xa,

area element ds

dx . dy. a

z

Using stokes’ theorem
qSA.dZ = H(VxA).ds

3243
— I I x.dxdy =1
1143
Example 2 : Given the vector field A = y%a_ + (2xy + x* + 2°) a, + (4x + 2yz) a,. Find divergence of vector
field.

Solution :
0 0 0
Divergence is given by VA = 5 +@AY+§AZ
01 D 7] L
= 8x[y ]+ay[2xy+x +z ]+az[4x+2yz]
=0+2x + 2y
=2(x+y)

Example 3 : A scalar field g = (1 + 2k)x’y + xyz will be harmonic at all point for which value of k.
Solution :

Condition for harmonic field Vg = 0
vzg = 6X2+W+$ =0

P 0 0
= o [2x(+ 2K)y +yz] + By [+ 20)x7 +xz] + 2,191
=2(0+2k)+0+0=0

1
Therefore k= —5

1.2 Co-ORDINATE SYSTEMS

1.2.1 Cartesian Co-ordinate System
The co-ordinates of a point P in the cartesian co-ordinate system is x, y and z along the x, y and z axis.
It can be represented as P (x, y, z) as shown below

y

> P(xy.2)

————————————
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. Differential length in cartesian coordinate is

di = dxa +dya, +dza,
. Differential area in cartesian co-ordinates

ds, = dydz-a,

E dxdz-a,
ds, = dxdy-a,
. Differential volume 1n cartesian co-ordinates 1is

A Z

dz| Eﬂ

Lay (&

=Y

X
dv = dxdydz

1.2.2 Cylindrical Co-ordinate System
The cylindrical co-ordinates of a point is represented in terms of p, ¢ and z along the cylinder as given below

\Z
NP 7
|
|
|
|
1 Z
|
|
|
|
~ : 'y
\\I hA
X
Here, p = Radius of cylinder.
¢ = Angle between x-axis and perpendicular on x-axis of the point.
. Differential volume in cylindrical co-ordinates is given by
dv = pdp.ddp.dz
. Differential Length in cylindrical co-ordinates is given by
de = dpa, +pdda, +dza,
. Differential Area in cylindrical co-ordinates is given by

ds, = pdodz-a,

ds, = (dp)(pd¢)-4,
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1.2.3 Spherical Co-ordinate System

The spherical co-ordinates of a point is represented interms of r, 8 & ¢ along the spherical surface as
shown below :

Differential length
d/ = dra, +rd0 a,+rsin 6.d¢ a,

Differential area

r’sin® dO d¢ 4,

ds = § rsin@drdea,

rdrdo a,

Differential volume dv = (dr) (rd8) (r sin 6 do)
1.2.4 General Co-ordinate System : (U, V, W)
U A\ W hy h, h;
Rectangular X y z 1 1 1
Cylindrical o ) z 1 o 1
Spheri cal r 0 b 1 r rsin O

Mathematical Expressions of Operators

. . 1 (3V 1 (3V 1 oV
(1)  Gradient VV = h_ﬁ h—zg h, ow
(i) Divergence of Vector A=Aa +Aa +A a4,
VA = [ [hhA |+-2 (h hA,)+- (hlthW)J
L o { hh aV a[hh avj+g[hlh26_Vﬂ
(ii1) aplacian VvV = hhh ovi h, du) ow{ h, ow
ha, ha, ha,
: o1 le o 9]
(iv) Cul VxA = hhh,| du v ow
hA, h,A, hA,
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h,h; ovow 4,
(v) Arca ds = | huhs dudw ?’v
hh, ovow 4,
(vi)  Volume dv = h h,h,0u v ow
(vil) Length d/ = hdua,+hdva +hdwa,

1.2.5 Co-ordinate Transformation

p(X, v.2) =(p, 0. ¢) = (p, ¢, 2)

3

Relation between Cylindrical and cartesian co-ordinates

Cylindrical Cartesian
p=yx2+vy? X =p cos ¢
p=tan’| Y] v =psin g

z=7z

Relation between spherical and other co-ordinates

Spherical Other Co-ordinates

r=4x>+y*+ 2 p=r1 sin O

I~ 2 2
O:tanl(g):tanl( XZ+y } X =r sin 6 cos ¢
d):tan*l(%) y =1 sin 0 sin ¢

Example 4 : Determine divergence of vector fields
(@ A =psin¢ a +pzd,+zcosda,
b B = rlzcos 04, +rsin’6cosd 4, +cos0a,

Solution :

12 10 o
(@) VA = 55 PA) 5 (A) 5,4
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= ——(p s1n(|))+—a—¢(p z)+—[zcos<|)]

= 2sin¢p+cosd
~ 10 1
(b) VB = —25( )+ 09(B sm9)+ 90(])( »)
= 1 a(cos 0) + 1 eae(rsmzecoscl)) 1 ea(I)(cose)

=O+2cosecoscl)+0

=2 cos O cos ¢

Example 5 : For above vector field A find curl v« A

Solution :
a, pa, a,
lle o0 &
VxA = plop b 2z
A, pA, A,
a, pa, a,
L o o0 90
=p P & Oz
psindg p‘z zcosd

= [Esin(l) —pz}ép + 0+l[3p22 —pcoso]a,
p p
T, A

= —E(zsmq) +p*)a, +(@Bpz—cosd)a,

1.3 ELECTROSTATICS

Stationary charge produces electric field E .
A charge may be point charge, line charge, surface charge or volume charge distributed.
There are two laws in electrostatics coulomb’s law and gauss law.

1.3.1 Coulomb’s Law

Statement : The force between two point charge Q; and Q, is inversely proportional to square of distance
between two charges and directed along the vector connecting two charges.
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kQ,Q, .
Force, F=—gz2 %
|£|

QQ,.(% %)

F, = - .3
A7 4me [ -5

Electric field g intensity is defined as force per unit charge

_F
E~Q
. Electric field due to point charge
. __Q .
E = dne 12 &
. Electric field due to line charge
— - J. P Ldl A
E = 4ne 2™
. Electric field due to surface charge
[Ipds
B a

E = 4re ™

. Electric field due to volume charge

__ [lev

= a
E ™ 4re 2™

Electrostatic potential is defined as work done per unit charge and it is scalar potential due to point charge.

V= 47520 r
Gradient of potential is ¢lectric field.
E = -VV
For close loop ‘C” work done is zero
V=-¢Edl=0
c

by stokes theorem for static field.
VxE =0

Electric flux passing through any surface areas
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Electric flux p = J.j.D.dS

where, D = Electric field density ¢/m?.
1.3.2 Gauss’s Law

Statement : The clectric flux passing through any closed surface is equal to the total charge enclosed by
that surface.

i.e., Wy = qS;DdS = Qenclosed
Integral form C.fD'dS = .[ p,dv (p # py)
p, = Volume charge density

Differential form vD = p,

Example 6 : Charge density inside a hollow spherical shell of radius r = 4 ¢cm centered at origin defined
as

0 for r<2
Py = ;izc/m3 for 2<r<4

Find Electric field intensity at r = 3

Solution :
1
From Gauss law $Eds = Qeem = E—IPVdV
0 0
1 1.4
= E_OJ.(O)dV+€_OJ.r_2dV [O <r< 3]
1 3 T 2T 4
E(4nR?) = E—OLZIO [, [ sin 6 dr do do]
E (4n x 39) = 4”6—X4(3—2)
0
E=gc
1.3.3 Electric Dipole
P
1;,//
A. /\6 QB
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. Electric dipole consist of two point charge, separated by small distance d having opposite polarity.
. Dipole moment p=qd
. Electric potential due to dipole is given by

_ PcosB

T 4ne 1’

Note : Potential is maximum along dipole and it is inversely proportional to square of distance.

Electric field due to dipole is given by

_ P [2cos6 a, +sinB a,]

E = 4n g
R 1
Note : For monopole E & 2
. b 1
For Dipole E *3

1.3.4 Electrostatic Energy

Energy stored in the system with electric field E and electric flux density 1) is given by

)
]

= %J.EOEZdV

1.3.5 Electric Boundary Conditions
Boundary conditions are defined when region consist of two different media.
Electric field composed of two orthogonal component, tangential component E, and normal component E, .
E=E, + E,
Consider the two different dielectric medium (1) and (2) with permittivities €, and e, respectively as

shown below

B
Medium 1
__________ ]_5:‘2
Medium 2

E,

According to boundary condition, tangential component of electric field is continuous at boundary,
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b t

S

) D
ie., E. =E or .

2
If the surface charge density at boundary is ¢, then boundary condition becomes.

D,-D, =e

S

1.3.6 Poission’s and Laplace Equation

Electric potential V and volume charge density E, in certain region is related by poissions equation

2 :p_v
Vv c

For charge free region vy =0

Uniqueness theorem states that if solution of Laplace or poission equation satisfies the boundary condition,
then solution is ‘Unique’.

1.4 MAGNETOSTATIC FIELDS

Magnetic field is produced by moving charges or constant current flow.

- -~

7 T e BT

7. -
///’, \\\\\\
1y [
[ I,|
AYRY ]
N 7.7
N L
3N s k<
7/ \
o I
N A
A - /
\\3\\ ___________________ s 1

-

- ——

Magnetic flux is. concentration of magnetic flux line outward from north pole towards south pole of
magnet.

Magnetic flux density is defined as magnetic flux per unit area and it is vector quantity. Its unit is Tesla
(T) or weber per squared meter (1 wb/m?)

Qv
B g™
Flux p = j B.ds

Relation between magnetic flux density B and magnetic field intensity [ is given by
B= pH=puH
where, u = Permeability of medium
Lo = 4nx107H/m
1.4.1 Bio-Savart’s Law

Statement : The magnetic field intensity dH produces at point P due to current element Id/ is given by
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_ Id/sin®
dH = “oRe
or dH = Id/xa, _ IdIxR

47R? 47R3

Direction of magnetic field is given by right-hand rule where fingers shows magnetic field line and direction
of thumb show current L.

H

<& . =B

1.4.2 Ampere’s Law

Statements : Line integral of magnetic field intensity around any closed path is equal to current enclosed
by the path

JHAl _
1

enclosed

By stoke’s theorem

$HA! _ [[(VxH)ds = [[Ids

or VxH=]
Curl of magnetic field intensity |y is equal to current density J.

Example 7 : Consider hollow concentric cylinder carrying I and -1 current in opposite direction. Find
magnetic field intensity inside and outside cylinder.
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Solution :
Case-l : If r < a

using ampere’s Law

Inside inner cylinder current enclosed is zero
$Hdl =0

H = 0 inside inner cylinder.
Case-ll : Ifa<r<b

fHAI =1

]
H= ek

Case-III : If r > b

fHA =1-1=0

H = 0 outside outer cylinder

A

H

E H och

G

.2

k5]

5

<

=

0 a b _r
Distance

Example 8 : An infinite current sheet lies in the z = 0 plane with K = ka,- as shown in figure. Find H.

L

R
ot

[y
=
-l
-
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Solution :

The Biot-Savart law and considerations of symmetry shown that H has only an x component, and is not
a function of x or y.

Apply Ampere’s Law to the square contour 2341, and using the fact that H must be antisymmetric in z,

§HAI = (H)(2a)+0+(H)(2a) +0

= (K)(2a) or H:%
_ (K
Thus for all z > 0, H= (7)21)(.

More generally, for an arbitrary orientation of the current sheet,

-1
H= 2K><an

a, is the unit vector perpendicular to the plane of the sheet.
Observe that H is independent of the distance from the sheet. Further, the directions of H above and below
the sheet can be found by applying the right-hand rule to a few of the current elements in the sheet.

1.4.3 Magnetic Potential

There are two type of magnetic potentials
(1) Magnetic scalar potential (V,,)
H= -VV

m

or (V) = J‘; Hd!/
For source free region (J = 0), then magnetic scalar potential satisfies the Laplace’s equation
Le., ViV, =0
It is only defined for current free region.
(2) Magnetic Vector Potential (A) :
Magnetic field density B can be expressed as curl of magnetic vector potential A
B = VxA
Magnetic vector potential satisfies the poission’s equation
Le., VA = )
Example 9 : Find current density that would produce magnetic vector potential A = 2a, in cylindrical co-
ordinate.
Solution :

Magnetic flux density is given by
B=vVvxA

19
= 5o (PA,)a,
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10
= —=—(2p)a
pap(p)z

2
= —a
B o

]= MLO(WB)
Ak

1.4.4 Force in Magnetic Field

If a charge particle ‘Q’ is in motion with velocity ‘v’ in presence of magnetic field density ‘B’ the magnetic
force experience by charge is

B
u
F
F=Q( x B)
If both magnetic field and electric field are present force on charged partical is given by ‘Lorentz force.”
F= QE+vxB)

Magnetic force can not perform work while electric force can perform work.

1.4.5 Magnetic Dipole

Magnetic dipole moment is product of current and area A, and it is normal to plane of Loop.
m= 1A a,

1.4.6 Magnetization in Magnetic Material

Magnetization is directly proportional to magnetic field intensity.

e, MaH
M=XH

where, X, is magnetic susceptibility and it is given by
Xn=n -1

where, 1, = Relative permeability of medium.

1.4.7 Magnetic Energy

In a magnetic field density B, stored magnetic energy density is given by

1 1
W, = —(BH)=—pH .
w= 7 (BH)=—n B

o

:MH]
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1.4.8 Magnetic Boundary Condition

In two different magnetic media with permeabilities 1, and p, respectively, at boundary field components
are given by boundary condition.

From the boundary condition, the normal components of magnetic field are related.
B, =B,

or normal component of magnetic field density are equal at boundary.

Tangential components of magnetic field intensity are related as
H -H, = Kor(H, -H,)xa,,=K

where, K is surface charge density.
IfK=0

1.5 MaxweLL’s EQUATION
1.51 Faraday Law

Faraday’s Law of Electro-magnetic Induction : The —ve sign indicates that the polarity of voltage
induced opposes the cause of induction of the voltage.

This is as per the Lenz’s Law.

c =2 <ﬁ E-dr.
| )
also, €= dt

Since the voltage induced in the loop is in the closed path; therefore it can be related to the electric field
as under

o= ¢ B
“Electric potential induced in a loop, is equal to the Rate of change of magnetic flux linking with the
loop™.
10
T

B — Time varying
magnetic field

The Magnetic flux (¢) in terms of Magnetic flux density (B) can be given by

o= !Bﬁ ()
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Putting these expressions in equation (i), we have

$E-ai _ -9[[B.ds
/ = dt|?

a3

The above equation gives
Integral form of faraday’s Law

Maxwell’s equation in integral form Now, as per Stoke’s theorem

BT _ [(9E).a8

[(9xE)-as _

8 s

or,

—
N
|

QD
Sr»’lwl
N~
o
w2

<
X
esl]
I
|
|

The above equation gives
Point form or differential form of Faradays™ Law
Maxwell’s equation.

1.5.2 Maxwell’s Equations
Maxwell’s Equations for Time varying fields

@

VxE ot

But B = uH
where, u = permeability of the medium.

Permeability (u) is given by

= pou, = 4nx107 H/m

0 .

— — - H

VxE at(“ )
VxE M@t
b ?'E:pv
But, f):gE

where, g = permittivity of the medium

(for free space)
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Permittivity of the medium (g) is given by

& = gy, & = 8.85x107*F/m (for free space)
R
S .E=—
0, V-E e
. v.B =0But, g = uH
L .. B__H
VxE a u a
. VxH = Jo+Jp
where, TD is displacement current
- D . . :
and Ip = Y (D 1s the displacement current density)
and D = ¢E
Therefore, J, is given by,
D eE
b ot ot
. . . - -
Thus, VxH = Jc+)p = JC+E
Maxwell’s Equations for free space
For free space, €= g, U=U,
and Conduction current TC =0 (Because there are no charge carriers in free space)
p, =0
Thus, the Maxwell’s equation are
v.D = 0:V-E=0
V.B=0,V-H=0
L. _ B
VxE ot Mo ot
— 7 j _;,_@ I @
VxH CT A 05

Maxwell’s equations for perfect dielectric

For perfect dielectrics Charge density
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Py =Oand TC:O

(There are no free charge carriers is perfect diclectric)

Thus, the Maxwell’s equation are

v-D=0
v-B=0
B o
VxE a M@t

<]\

X

T
Il
Uuu
Il
2|
|
2|

Maxwell’s Equations for Harmonically Time Varying Fields

. For a Harmonically Time-Varying field

E = E,(cosot + jsinot)
= Eoej‘Dt

E = Ej e and H=H,;™

oE . oH . jot
E = E, choejmt and E:JC‘)HOe
E _ joE and@:jmﬁ

ot at

From the above equations, For Harmonically Time-Varying fields,

So, the Maxwell’s equations are

.0 =porV-E=Lr
&
v-B =0
oB .
Oy E = ——=-joB
VxE a J
or VxE = —jopH
. 1 B S
VxH = chazij:JmD:Jc+JmsE

But, the conduction current density (J.) is
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J. = oE..(Ohm's Law)

VxH = oE + josE or, VxH=(c+ jog)E
Maxwell’s equation for Harmonically Time-Varying field in a perfect dielectric

For a perfect dielectric,

Py =Oand TC:O

. Thus, the Maxwell’s equation are
v.-D =0
v-B=0
VxE = —jouH =—-joB

VxH = joD=josE
1.5.3 Conduction and Displacement Currents Densities

. According to Ohm’s Law,

. Conduction Current density (fc) is given by J. =cE

. e e - D ¢E
. Displacement current density (JD) is given by Jp = SE
. For harmonically time-varying fields :
J. _
e
J, = josE
Loss tangent (tan J)
Je
tan 6 = jD
B Total current
Jopreommrmesg L ()
o
- > E
JC
El ol

Loss tangent = m = w

o]

Loss tangent = tan & = W
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o o
QD © josg”
G —
Jo = jco—s'JD
- c -
or JC = EJD Z—90°

Conduction current density (fc) lags the displacement current density (TD) by 90°.
Classification of Dielectrics on the basics of the dielectric behaviors
Case I : Good diclectrics. For a good diclectric,

Jo <<Jp

C << ®E

Case II : Semi-diclectrics. For a semi-dielectric,

Jo = I, and c=o0t

Je

loss tangent = i =1
D

= tan 6 = tan 45°
3 =45°

Case III : Good conductors. For a good conductor,

Jo > and o >> o

Example 10 : Determine the electric field intensity at the point P for the arrangement shown in Fig.

p
T
I
|
R=1m R
a=lem | Q, = 2000 pC
Q;; Q.= 1000 pC
AN Q, = -1000 pC
s E N2
// d
2 04—————21 ————— $ Q

Solution :

The configuration of the charges is shown in the figure, where the points A, B and C are marked.

y

X
Q, = 2000 pC
Q, = 1000 pC

Q, =-1000 pC



24 |

Basics of Electromagnetic Theory & Maxwell's Equations EE, EC, EEE, IN

E, at P due to Q at point C is given by

E, =

As R>>a, CP = R

E, at ‘P* due to Q, at A is given by

As AP » R

where ‘07 is shown in the Fig.

E, at ‘P’ due to Q; at B is given by

E, =

As BP » R

-, The resultant E field at 'P' is given by

E =
From equations (1), (2) and (3)

™
I

A -
4re, (CP)? along Cp

2000x1072 x 367 x10° _.
2 ay
47(1)

184, V/m

Q,

 4ng, (AP)° along Ap

1000 x 1072 x 367 x10°
47(1)?

9 V/m along AP
9cos(0) a, + 9sin(0)a,

Q; /
4me, (BP)* along Bp

~1000x107'%2 x36m x 10°
4m (1)

-9V/m along Bp

9 V/m along pp

9cos(8)d, —9sin(0) a,

E; +E2 +E;

184, + 9cos(0) a, +9sin(0) a, +9cos(0) a_ —9sin(0) a,

(D

)

e
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= 18cos(0)a_ + 18a,

From the figure

tan 6

It

=200

N\m"}d
N~ S

1

cosO = E

E = (0094, +184,)

Example 11 : A infinitely long straight wire carries 1000 A of current and in the vicinity there is a circular
conducting loop of 100 mm diameter with the centre of the loop 1 m away from the straight conductor. Both the
wire and the loop are coplanar. Determine the magnitude and direction of current in the loop that procedures a
zero flux density at its centre.

Solution :

The infinitely long wire PQ with I; = 1000 A and circular loop with center, O at r = lm is shown in Fig.

2R = 100mm

)

I L

g —————
A

Magnetic flux density, B; at O due to PQ is given by

- _uo_Il_A
B, = 2nr(a2)

Let I, be the current through the circular loop such that B, produced by it at O cancels with B, . giving

zero resultant flux density, B.

B, is given by

. I, .
B :Moza

L T TR
5= 58, = [ B
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The direction of I, is counter clockwise.

2

IR LR
Tr Tr
1000 50

T

——A=1592A
1000

Example 12 : A square coil of 10 turns and 10 cm side is moved through a steady magnetic field of
1 Wb/m? at a constant velocity of 2 m/sec with its plane perpendicular to the field as shown in Fig. Plot the

variation of induced e.m.f as the coil moves along the field.

Solution :

The square coil ABCD moving into the magnetic field is

. X X X_X X
e B
X' X X X X
X[ x x x X
v
X[ x x x X
X X X X X
| »|
[ 1
d

B=1wb/m’

v=2m/s
d=20cm
a=10cm

shown in Fig. 1

y
N-t 4 B =1 Wb/m’
4 v =2m/s
square coil WY < x
v =
— B
C B X X X X X
a X X X X X : - X
0 20 30 40 i
X X X X X mcm
D A
a=10cm > X X X X X
f«—— 20cm —>]
Region of
magnetic field
Fig. (a)
e 4
2V
X
x=0 10 20 30 40 in cm
t=0 0.05 0.1 0.15 0.2 —— t(insec)
Fig. (b)

Let the right side of the coil AB be at x = 0 initially at t = 0.
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As the coil moves in the positive direction of x, it comes under the influence of B (magnetic field) when
x > 10 cm (t > 0.05 sec) and ¢ cut by the coil increases.

where

and

emf induced

dp = (a dx) B
dx _
a

€

o dedx
dt dx dt

NaBv=10x10"x1x2V=2V

oo For 10 <x <20 0r 0.05 <t <0.10,
e=2V

At t = 0.1 sec, the coil occupies the position 10 < x < 20 where the flux cut by the coil reaches its
maximum value ¢

max-

For 20 < x <30 or for 0.1 <t < 0.15, ¢ does not change.

emf =0
For 30 <x <40, or 0.15 <t < 0.2, ¢ decreases with time.
. c=-2V
For 40 <x, or 020 <t, ¢ =0,
: e=0

Variation of induced emf, ¢ v/s x and ¢ v/s t is shown in Fig. (b).

Example 13 : An infinite number of charges, each equal to ‘q’ are placed along the x = 1, x =2, x = 4,
x = 8, x = 16 and so on. Find the potential and electric field at point x = 0, due to these system of charges.

Solution :
q q q q
X=0 &—x x x x X
1 2 4 8
=1 =2 =2 =2’
qd 1 Tl 2 }
Vo l=——| =T+ =+ —+..
dre|l 2 22 2

The infinite number of terms in the above summation are in geometric series.

V- q |  Firstterm } ¢ 1 _q

4me| 1- Common ratio | — El 1 2ne

qft 1 1 1

E = 4 _1+(2)2 +(2)4 +(2)6 +"}(_§X)

First term } q

- (4 )L — Common ratio | 4pe
d7e

q 1 q

e
4

where a, is the unit vector in the positive x-direction and € is the permittivity of the medium.
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Example 14 : An electron moves in the X-Y plane with a speed of 10° m/s. Its velocity vector makes
an angle of 60° with X axis. A magnetic field of magnitude 102 T exists along the Y axis. Compute the magnetic
force exerted on the electron and its direction.

Solution :
Given : v = 10 m/s along Qp as shown in Fig.
5
VA v
B B P B B
‘ ‘ ¥ |

60°

B = 4, 10T (or Wb/m?)
Magnetic force on the electron

= —e(¥xB)=—¢(vBsin0)a,

= —10° 107 5in(30°)4,

= —%104 a, Newtons

Example 15 : A charge +Q is uniformly distributed throughout the volume of a dielectric sphere of radius
‘R’ and dielectric constant ‘e;” . Based on Gauss law, determine the expressions for the electric field, E as a
function of distance ‘r’ from the center of the sphere, within the ranges 0 <r < R and R < r. Indicate expression
(s) for the critical point (s) on the sketch.

Solution :

The charge distribution is shown in Fig. (1)
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For 0 < r < R, when point P is inside the sphere, assume a spherical Gaussian surface through P.

Applying Gauss law,
@B-dg = Charge enclosed

3Q 4 s
2 = - —Tr
D4nr AR 3
3
r
Danr® = Q3
D r’
E= e R3808R4Tl:1‘2
Q
r=K;r
E 4nR3808R 1 (1)
where, K, = %
47R’g e
Q-
Asr > R, E, = dne e R?

The sketch of E with r is a straight line passing through the origin. For R < r < o0, € = g, (for air) and
point P is outside the sphere,

D4rrZ=Q
Qu I} e
E= 4n g, R -(2)
Q
where, Ky= 4
0

Q

Ast > R, E, = 4ne,R?

E,<E,as gz >1
The value of E rises from E; to E, along AB at the interface between the two medium (r = R)

The resultant sketch of E as a function of r is shown in Fig. 2

E 4
B
E, b-——————-
E -———— |A
|
|
|
|
|
|
0 R r

Fig. (2)
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With critical points A and B at r = R

1.c., the interface between the two media.

Example 16 : Show via the construction of a suitable Gaussian surface, that the capacitance of a spherical
capacitor consisting of two concentric shells of radii a and b is given by

ab
C = 47 (b-a)

where g, is the free space permittivity.
Solution :

The electric field intensity at a general point, P as shown in figure in the region between the concentric
spherical shells, can be found by assuming a spherical Gaussian surface through point P. Let Q be the charge on
the spherical shells. Applying Gauss law:

4
D=c¢E
- Q .
. a,,a<r<b
¢ 4rer?

Potential Difference between the conducting shells

A*.*.
VAB=_]£ E-dL

For dL = dra,
A a
Q Q |
_ - dr =
Vag = i dner? ' 4758r|b
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C:&: 4re
Vag (l_lj
a b
ab
:4 -
ns(b—a)

Example 17 : A current | in the short conducting element shown in figure produces a flux density B, at
point 1. Determine the magnitude and the direction of the flux density vector at point 2.

o
e

Solution :

The elemental (or differential) length dL through which I is flowing is shown in Fig. 1 The Magnetic flux

density at any point P due to a differential current element 1 dL is given by

Al ul dL xag
4nR?

y ? )
] /? B,
| /
I 2/
nlez
A
[}

1

’_h
1
|

Fig. (1)
where R is the distance from the center and ay 1is the unit vector along the line from the element to the

point.
. B, at point 1 is given by

uIdL sin(90°) _
B = .z @
1 4rn(d/2)
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1dL
- B (D

nd?

. B at point 2 is given by

. wldL x4,
B2 7 T

where, * = 4% +d*> =24

and dLxa, = dL sin(180+45)£1y

uI(—dLé j
By = V2 )
4m(24?)

_pdL a
= 8\/5 ndz z (2)

1 =
R = __B
B, 82 1

Example 18 : Given the potential function V = 2x + 4y in free space, find stored energy in a 1- m® volume
centered at origin.

Solution :
. o gy, (v, v
Electric field intensity is E=-VV= ( AT ayay + 5 az)
E=-2a, -4a, (V/m)
[El = 20V /m
Energy density in space is given by
W, = le E?
E— 2
So energy stored in 1 — m® Volume is
W = 1 eE*x1
2
S TS
= 2X36n><10 x 20
107
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Example 19 : For an electric field E = E;, sin ot, what is the phase difference between the conduction
current and the displacement current?

Solution :
The conduction current is defined as

J,=c6 E=0c E; sin ot
where, o is conductivity and the displacement current density is

- dD__&E

la= =&

=€ coEosin(%—mt)

So the phase difference between J, and J; is 90°.

Example 20 : A circular conducting loop of radius 2 m, centered at origin in the plane z = 0 carries a
current of 4A in the a, direction, What will be the magnetic field intensity at origin ?

Solution :

According to Biot-savart law, magnetic field intensity any point P due to the current element Id/ is defined as

id/ xR
47R?

- |

where, R is the vector distance of point P from the current element.
Here current is flowing in a, direction.

So the small current element
Id! = Tpdda,

= 4x2d¢a, =8dda,

and since the magnetic field to be. determined at center of the loop so we have
R =2m (radius = 2m)

ag = -a, (pointing towards origin)

Therefore the magnetic field intensity at origin is

_ ¥ Gdin)xCa,)
~ 1 T dn0y

R Y
~ 4 16m T 2ttt T & Am

Example 21 : Two infinitely long wires separated by a distance 5 m, carry currents I in opposite direction
as shown in the figure

y
< lm—»
® e ®
I 1
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If I = 8 A, then the magnetic ficld intensity at point P is

Solution :

The magnetic field intensity produced at a distance p from an infinitely long straight wire carrying current
I is defined as
I

HZ%

As determined by right hand rule, the direction of magnetic field intensity will be same (in —a, direction)
due to both the current source. So, at point P the net magnetic field intensity due to both the current carrying
wire will be

H=H, +H,

I I
= 2@ ) P m )

28, 3, (I = 3A)

8t YT wY

Example 22 : An infinite current sheet with uniform surface current density K = 4a_ A/m is located at z
= 0 as shown in figure

¥4

S e

\

X

Magnetic flux density at any point above the current sheet (z > 0) will be
Solution :

For determining the magnetic field at any point above the plane z = 0, we draw a rectangular Amperian
loop parallel to the y-z plane and extending an equal distance above and below the surface as shown in the figure.

enc

From Ampere’s circuital law, [ Bdl = pl

¥4
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Since the infinite current sheet is located in the plane
z=0
So, the z-component of the magnetic flux density will be cancelled due to symmetry and in the closed
Amperian loop the integral will be only along y-axis. Thus we have

B(2)) = polene
2B/ = p K/ (I, = K)
As determined by right hand rule, the magnetic flux density above the plane z = 0 will be in —a, direction.
So we have the flux density above the current sheet as

_ _Boxd
B——OTay

= —2},L0abe/m2 (K =4 A/m)

Alternate Method : The magnetic flux density produced at any point P due to an infinite sheet carrving
uniform current density K is defined as

B= Ju(Kxa,)

where, a, is the unit vector normal to the sheet directed toward the point P.

So, magnetic flux density at any point above the current sheet K = 4a_ is

B= 1u(da)x@,)

= 2peay wb/m? (@, = a)
Example 23 : Vector magnetic potential in a certain region of free space is A = (6y — 2z) a, + 4xza,. The
electric current density at any point (x, vy, z) will be

Solution :

The magnetic field intensity, (H) in the terms of magnetic vector potential, (A) is defined as

1
= = (VxA
H MO( )
_ ul[w(6y—2z)ax+4xzay]
0

1
— —[-8a, —2a_+6a
Mo[ X y z]

Since the electric current density at any point is equal to the curl of magnetic field intensity at that point.
ie., J= VxH

So, we have the electric current density in the free space as
I = Vxﬁ[—SaX—2ay+6az]:O

Q00O



