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FOURIER SERIES
AND FOURIER TRANSFORM

THEORY

1. FOURIER SERIES :

A fourier series is a representation of a function f(t) by the linear combination of elements of a complete
set of infinite mutually orthogonal functions.

These elements must be mutuallly orhtogonal.

-

(Note: (i) Mutually orthogonal functions:

Two functions are said to be mutually orthogonal over an interval between t, and t,, if the integral
of their product over this interval is zero.

ie. [ £()h() =0
In general I f, (t)f, (t)dt =0 (i=k)

(i) It assure that one function f(t) does not have any component of other function g(t).

(1) The example of orthogonal functions are: Lengendre polynomial, Jacobi polynomials, Trigonometric
and exponential function.

(iv) Orthogonalities in complex functions

ty

T f1 (t)fz* (t)dt: I fl* (t)f2 (t)dt =0

4

where, f" and f; are complex conjugate of f(t) and f,(t) respectively.

2.  DIRICHLET’S CONDITIONS
There are sufficient conditions that needs to be satisfied by a function f{(t) for its fourier series representation
within the interval (t, t,). These are follows:

+00

(i) x(t) is absolutely integrable, i.c. I ‘X(t)‘dt <0

(i) x(t) is single valued and has only finite number of maxima and minima within any finite interval.

(1) x(t) has a finite number of finite discontinuitics within any finite interval.

(Note: Fourier series is valid for periodic signals only. )
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3. TRIGONOMETRIC FOURIER SERIES :

A function f(t) can be represented by a fourier series comprising the following sine and cosine functions:

f(t) = a, +a, cos(o,t)+a, cos(20,t)

+b, sin (20,t) + .......+ b, sin(nogt) +.......

fit) = 3+, [ a, cos(nogt) +b, sin (nogt) | t<t<t,+T

n=1
2_7:
Where T = o,
1
a, = = I f(t)dt = D.C. or average value
Over_a
one time
period

a = 2 I f (t)cos(no,t)dt

one time
period

I f (t)sin (no,t)dt

one time
period

=

Example: Find the trigonometric fourier series representation of following figure

X0
+A
-T2 | -T/4 ¢
0 T/4 T2 -
_A T
Solution: x(t) = 3+ [a,cos(nogt)+b, sin(not) | (@)
n=1

Signal x(t) is given by

x(t) = {+A ;—I<t<+I
4 4




Communication Systems Fourier Series & Fourier Transform | 3

L'
a, = ¥IT x(t)cos(no,t)dt
2
T T I
2| ¢ 4 2
a, = T I —Acos(nmot)dtJrI A cos(na,t)dt +I — A cos (no,t)dt
T . .
- o ;
I ’I +I I
4 4 2
_2AL I cos(noyt)dt + I cos(noyt)dt I cos (no,t)dt
T 7 . i
L 2 4 \
. F . | %
[ o] fsnon] 20
| v R no T
T no, T no, T 0 !
L 2 4

By solving this, we get

%7 o 2 ) 2nm /A =

4A [nnj
a = —sin -0
n nw 2

The second term in above expression is zero for all integer values of n.

4A | (nnj
a = —sin| —
n nw 2

and b_ = 0 because given waveform is even function. and a, = 0 because given wave form is symmetrical
about horizontal axis.

Putting the values of a_ in equation (i)

4A 1 1
X(t) = T[cos (mot)—gcos (3m0t)+§cos(5m0t) ....... }Ans.

(Note: 1. Symmetry conditions

(i) If x(1) = even function ; then, b = 0.
(ii) If x(t) = odd function ; then a, = 0 and a = 0.

(iii) If x(1) is symmetrical about horizontal axis, then a, = 0.
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f 2.  Some trigonometric identity

-1; n=3711
(i) sin[%j _ 4+l n=159 |n=0,123,....

0; n = even
0; n =odd
nw >
. | _ N =0,1,2,3,4,......
(i) COS[ 2 j ~ (-1 n :even}n

- nmw
(i) tan S )= win= 1.2.3,......
(iv) sin(nn) =0:;n=0,1,....

(v) cos(nm) = (—l)n; n=0]1,....

(v1) tan(nn) =0:;n=0,1,....

-

4. POLAR FOURIER SERIES REPRESENTATION :

A function x(t) can be represented by a polar fourier series

X(t) = DO + Z Dn (nc‘)ot - (I)n)
n=1

1
where, D, = 3, = T I X(t)dt = D.C. value or average value.
over a
time period
D, = \Jal+b:

¢,

tan! b—“
an

5.  COMPLEX/EXPONENTIAL FOURIER SERIES

A function x(t) with period T can be represented by complex / exponential fourier series.

x(t) = > C,exp(jno,t)

where, 0, =

=y

Cn ) %over Jtime b (t) o (_jnm()t) dt
period

...(i)
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Coefficient C_are in general complex form, hence

C, = |Cylexp(id) - (iii)
So, using equation (iii) in equation (ii)

o0

s = 2. [Calexp(i(nogt+4,))

n=—w

The plot between |C | versus n (or no) is called magnitude spectrum and ¢, versus n (or no,) is called
phase spectrum.

It is important to note that the spectrum of a periodic signal exists only at discrete frequency.

Example: For the unit amplitude reactangular pulse train shown in figure below, compute the fourier series
coefficient.

L X(O

’

5 3 -1 o+l 43 45 t (m sec)

Solution: Signal x(t) has a period T = 4 millisecond and it is ON for half the period and OFF during the
remaining half.

i C, exp(jno,t)dt

n=—oo

x(t)

2
0, = ?n: 2nf,

T/2

1 .
C, =T I x(t)exp(—jno,t)dt

-T/2
1 T/4
=T I exp (—jno,t)dt

-T/4

2sin(nnj
1 2

T no,

. [nnJ
sm| ——
_\2)

nw
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All the fourier coefficients are real but could be positive and negative. Hence ¢ is either zero or +r for
all n.
A[Cnl
Glos
RN C,=0.318
G/ \C, C,=0.106
/ \ C,=0.063
// \\
c, Lo VoG c,
P g AN / \ /7 AN ~T™~
s ~ / N A \ e N
/ N ! \ N/ N
/ ’\ \ 7 X N V/ 1 \ 7 W N
-6 -5 4 3 2 -1 o 1 2 3 4 5 6 n—s
-1.0 0.5 0 0.5 1.0 nf,(kHz) —»
(a) Megnitude spectrum.
A (I)n
1 180°
& L L & » 11
-7-6 -5 4 3 -2 -1 0 1 2 3 4 5 6 |7
4 —180°
(b) Phase spectrum.
. C,. the vaerage or the DC value of pulse train is 5
. Spectrum exists only at discrete frequencies, £ = nf, with f, = 250 Hz. Such a spectrum is called the
discrete spectrum
. The envelope consists of several lobes and the magnitude of each lobe keeps decreasing with increase
in frequency.
. The magnitude spectrum is symmetric and phase spectrum is antisymmetric. This is because x(t) is real.
. ¢ at n = £2, +4 etc. is undefined at [C | = O for these n. This is indicated with a cross on the phase
spectrum plot.
6. SINC FUNCTION
. sin(nk)
; - sin¢c (A)=———=
sinc A ( ) ( Tl')u)
7.  SAMPLING FUNCTION

s.(1) = 2
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8. FOURIER TRANSFORM

Fourier transform is used to find the frequency component in time domain signal.

Signal x(t)

’ '

Periodic Aperiodic
— (Fourier series 1s used) — (Fourter transform is used)
— Spectrum will be — Spectrum will be continuous
discrete spectrum spectrum.

Fourier transform of x(t) is X(f) . X(f) is defined as
x(t) = X

X(f) = I x(t)e *™dt (Analysis equation)

X = Fx(1)]

X(f) is, in general, a complex quantitiy.

X(f) = X (F)+ X ()
= ’X(f)’ej¢(f)
where, Xy (f) = Real part of X(f)

X (f ) = Imaginary part of X(f)

|X(f)| = Magnitude of X(f)

_ \/(XR(f))2 (X, (F))

D

—_—

—

~—
Il

- )

The plot between |X(f)| versus f, is known as magnitude spectrum and 6(f) versus f, is known as the
phase spectrum.

Inverse fourier transform (IFT) is defined as

x(t) = F! [X (f )} = ]0 X(f )ejznﬁdt (Synthesis equation)

—00
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Example: Find the fourier transform of figure.
x(t)
A
A
> {
/2 0 +t/2
Solution: x(t) = X
X(f) = I x(t)e *™dt
+1/2 ]
= [ APt
-1/2
; /2
_ A|: ef._]Znﬁ :|
—j2nf o
= At sinc(tf)
. sm(nx)_ 1 : x=0
Note: sine[x] = = =0 L x=tLi2
1 ; fi=0=1=0
sinc(f'c) =40 ; fr==21,42.£3,.......
rag e -
\ T 1T 1
X(® = [X(£)] ™
(V)
A
1
0.212
-2/t -1 0 1/t 2 J—

(a) Magnitude spectrum
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4 o®

-+ +180°

1/t 2/t 3/t 4/t

-2/t -1/t 0

~180° 1

(b) Phase spectrum
. The fourier transform of x(t), X(f) contains all the possible frequencies.

m+1

m
. During the interval, — < ’f’ < , with m odd, sinc(ft) is negative. As the magnitude spectrum is
T

always positive, negative value of sinc(ft) are taken care of by making 6(f) = £180°.

. Signal bandwidth (B.W) = Highest positive frequency — Lowest positive frequency
—w0 -0 =00
for proper transmission of a signal, channel B.W. > signal B.W.
. Signal B.W. is « . So, it is not possible to transmit the signal. Signal B.W. should be finite.
. Before transmission, the above signal should be band limited by band limiting process.

. To band limit a signal, all the its significant frequency components has to be retained and insignificant
frequency component has to be eliminated.

. Significant frequency contains almost of 95% to 99% of total strength of given signal.
If(f) %(f) -H(®)
XM 1
band unlimited
signal x -
(It has infinite . ¢
bandwidth) “1i [0 1K i 1k |0 1k
Low pass filter Band limited signal
[It has finite B.W.]
BwW. - 1
T
T#0

For transmission, significant frequency are given high importance for effective utilization of available
channel bandwidth.
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9. PROPERTIES OF FOURIER TRANSFORM
(i) Duality property :

If x(t) = X
then, X() = x(-f)
Example: Find out the fourier transform of sin ¢ (100t).
Solution :
x(H)
A
A
= Atsin(fr)
2 |0 +2 ~t
x(H) = x(-)
A
A
Atsin(tt) = . | |
/2 —, - (Byusing duality)
Put = 100
and A=
A
~ll-
A= 100
sin ¢ (100t) = .

_50Hz 0| +50Hz

Example: Find out the fourier transform of d(t).

+00

Solution: F[é(t)} = J 5(t)67j2nﬁdt
F[3()] = I 8(t)dt [x()3(t) = x(0)3(t) ]
F[3(t)] =1 ]O 8(t) dt = Area under curve = 1
8(t) = 1

Example: Find the fourier transform of 1.

Solution: ) (t) = 1
1 = §(-f) [by using duality property]

1 = 3(f) [5(f) is an even function]
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A ?i(f)

| Area=1

0 0

Containing single
frequency component

(ii) Frequency Shifting Property :

If x(t) = X(f)
then, x(t)e?™ = X(f-f,)
and x(t)e ™ = X(f+1)

Example: Find out the fourier transform of oi2™t and o-i27fot.
)
—f, )

Fle P ] = 8(f +1,)

Solution: 1l = 6

2mft —
J2Tlo -

>
-

l-¢

.
jamfet =

n
[
+
h

1-e

F|:ej2nf0t:| -5

(
(
(
(

f—

H

Example: Find the fourier transform of A cos(2nfyt).

Solution. et = §(f 1)

—i2nfyt —
JeTht —

e 8(f+1,)

By adding both equation

et L P = §(f —f,)+8(f +1,)

2cos(2nfyt) = 8(f —f,)+8(f+£,)
1

cos(2nf,t) = 5[6(f—f0)+6(f+f0)]

By multiplying A on both side,

Acos(2nfyt) = %[5(f—fo)+5(f+fo)}

A A

Acos(zﬂ;fot) = 56(f—f0)+36(f+f0)

[by using frequency shifting property]
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A2 A2
A A
76(f+fo)T TjS(f—fo)
Acos(2nfyt) = - ’O - > f

Fourier transform of Acos(2nf0t) has two frequency component at +f, and —f.

Example: Find the fourier transform of X(t)cos(2nf0t) when fourier transform of X(t) 1s X(f).

Solution: Given that () = X
x(t)e™ = X(f-f,) [by using shifting property]
x(t)e P = X(f +1,)
By adding both,
x (1) 4 x (t)e P = X(f—£,)+ X (£ +f,)

X(t)[ej27Tf0t + e’j“f()t] = X(f-f,)+X(f+1,)

x(t)[ 2cos(2mfyt) | = X(f—1f,)+X(f+f,)

x(t)eos(2nft) = [ X(F-F,)+ X(F+£,)]

It means that when the signal x(t) is multiplied with cosine signal, then fourier transform of x(t) is shifted
by +f, and £

F(x(®) = XD

x(0) ‘
\
» 1 ~ >
—1/2 0 2 -1/t 0 1t f
X
F(cos (2nft))
A cos 2nft) A
172 L2
< >t — < > f
JUVIY VY
T-1
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F(x(1) cos 2nf,t))

x(t) cos (2zft) A
A
+1
N NN R/ I I I
i ! ! |
! i i |
! | - | I
i o 1] ! I 1 o 1. 1.t
! | B S T It (PR st
AR T Y A ’
-1

10. RESPONSE OFALINEARSYSTEM

X0 i Y0
H( H(o,)|e
It (in terms of fourier scrics)
{0-3 e

11. NORMALIZED POWER IN FOURIER SERIES

() Normalized power in trigonometric fourier series
e 2 e 2
a'Il bIl
S=a+t) TH> F
= 2 H 2
(i) Normalized power in polar fourier series

0 2
s-a+y &

n=1

(1) Normalized power in complex / exponential fourier series
S = Z DnD;

Example: Find the fourier transform of rectangular pulse.

Solution: Rectangular pulse is defined as

x(H)
A

A
-

0 T

1 ; O0<t<T
x(® = o : elsewhere
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Fourier transform of  x(t)

x(f) = T X(t)esznﬁdt

T _jont T
- I T
% —j2rf

0
1 -
_jz?[e j2nfT _1:|

—j2nfT/2 i2nfT/2
1 [e 2nfT/2 _ o ]

- i2nf 2T/

— Te*"?sinc oT
27

Example: Find the fourier transform of Gaussian pulse.

Solution: A Gaussian pulse is defined as

X(t) = g’
x(1)
>t
0
Fourier transform of x(t) = F[x(t)] = I X(t)e*jmt dt
i -t —jot < *[T[thjmt}
Flx(t)] = ] e™e™dt = [ e d

2
©
2 it = | VAt+—F— | +—
Put Tt + jot [ > /—nj

I
—_—

F[x(t)]
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j®
Assuming Jri+ 2J—\/; =y

Jrndt =dy
dy
dt = \/;
Flx(] = ¢ ] o /e
efnfz B
-7 2I ¢’ dy

F [efmz J = ot

2 2
efm ;\ efnf

(because ov* is an even function)

12.  SOME IMPORTANT PROPERTIES OF FOURIER TRANSFORM

)

(i)

(iii)

Time Scaling Property
If X = X
1 f
Then x(@at) = MX(QJ
where, a = any real constant.
Time Shifting Property
If x) = X(®
Then x(t-b) = X(f)esznﬂ’

Time Differentiation Property
If x(t) = X(H)
d .
Then —x(t) = (j2nf)X(f)
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13.

14.

(iv) Area Under the Curve

If x(t) = X()

then I x(t)dt = X(0) = Arca under the curve x(t)

and I X(f)df = x(0) = Arca under the curve X(f)
CONVOLUTION

It is a mathematical operation which is used to express the input / output relationship in a linear time
invariant system.

It is represented by *

x; (1) *x, (t) = T X (1)x, (t—1)dt

(a) Convolution Theorem in Time Domain
If x (1) = X (f)
% (1) = X,(f)
then X () *x, (1) = X (f)X,(f)
(b) Convolution Theorem in Frequency Domain

If x (1) =

1
>
=

then X, (t)x2 (t)

1
s
=

*
>
=

ENERGY SIGNAL
Energy signal has finite energy and zero average power.

x(t) is non periodic signal or time limited signal, then energy is expressed as

If x(t) = X(f), then
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2
‘X (f )’ =— = Energy spectral density = Energy density spectrum.

energy per unit B.W. = y(f)
POWER SIGNAL
A power signal has finite power and infinite energy.
All periodic signal is power signal.
0<P<w E=w
where, P = average power and E is energy of signal.

If x(t) is periodic signal, then

= lim — I Xz(t)dt

If complex fourier series ofx(t) = Y. C,exp(jno,t)

then power (in terms of complex fourier series coefficient.

o0

QOO



18 |

Fourier Series & Fourier Transform

ECE/EE/EEE/IN

=

Let x(t) be a real signal with the Fourier transform
X(f). Let X'(f) denote the complex conjugate of
X(f). Then

(@ X(-H=X® (b)) X(H = XD

() X(-H =-X(H) (@ X(-H)=-X'()

Let the transfer function of a network be
H(f) = [H(®)| ¢°D. If a signal x(t) is applied to
such a network, the output Y(t) is given by
(@) 2 x(1) (b) x (t-2)

(c) 2x (t-2) (d) 2x(t-4m)

Let m(t) = cos[(2r x 10%)t] be the message
signal and c(t) = 15 cos [(2n x 10%t] be the
carrier. ¢(t) and m(t) are to generate an AM
signal. The modulation index of the generated

AM signal is 0.5. The ratio of the upper sideband
power to the carrier power

1

(@) 5 (b) 1
1 Nt
(c) g (d) 16

The trigonometric Fourier series of a periodic
time function can have only

(a) cosine terms
(b) sine terms
(c) cosine and sine terms

(d) DC and cosine terms

PRACTICE SHEET

1. 5.

£ O

Which of the following cannot be the Fourier
series expansion of a periodic signal?

(a) x(t) = 2 cost + 3 cos 3t

(b) x(t) = 2 cos ©t + 7 cost

(c) x(t) = cost + 0.5

(d) x(t) = 2cos 1.5nt + sin 3.5 =t

The Fourier transform of given figure with © =
1 rad/sec

£(1)
1
| |
| |
| (
\ /:
-1 ‘o ot
(a) cos +s1n T j
180
(b) 4cos +sm ij
180

(c) 2cos—+ 4sin ij

( 180 180
(d) (2 sin — + 4 cos ij
180 180

QOO
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ANSWERS AND EXPLANATIONS

1.

Ans. (a)
x(t) < X(f)
we know that
xX(-t) <> X(-6)
and x'(t) © X'(-)

-+ x(t) 1s a real signal

x(®) = X'(t)

x(f) = X'(-)
or x(-f) =X
Ans. (¢

Given H(f) = pe—i4r

and x(t) <> x(f)

+ olp Y(t) <> x(t) © h(t)
Taking Fourier transform we get

Y(f) = X(f) H)

(according to convolution property of F.T.)

Y = X(f)2e ™4

Y = 2X()e 2

taking in verse F.T. we get

Y(t) = 2F- T [X(£)eim2] (D)
we know that
Time shifting property
X(t-t)) < x(f)e3%mo ..(i1)
so from (1) and (2) we have

Y(t) = 2x(t - 2)

3.

Ans. (d)

Upper side band power _ p* _ (05)° 1
Carrier power 4 4 16

Ans. (d)

The trigonometric Fourier series of periodic time
function can have DC and cosine terms.

Ans. (b)

x(t) = (2 cos mt + 7 cot t) does not satisfy the
Drichlet condition, therefore, it can’t be expanded

as Fourier series.

Ans. (d)

Signal is
f(t)=t>—1<t<+1
Fourier transfer of signal is,

+1
FIf (D] = | te7dt

-1

= .L(ej‘D _eio) %(e_j‘” +el)
jo o

+2—3(e_jm —¢i)
jo
if @ = 1 rad/sec.

F(f(t)= 2(e7 +ej)+j(ej —¢7i)

+2sin

=4cos r
80° 180°

QOO
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