

For All Banking Exams

QUANTITATIVE APTITUDE &

COMPUTER

Table of Content

S No.	Chapter Title						
1	Simplification	1					
2	Number System	6					
3	LCM & HCF	12					
4	Surds & Indices	14					
5	Ratio & Proportion	18					
6	Percentage	21					
7	Profit & Loss	29					
8	Discount						
9	Average	35					
10	Mixture & Alligation	42					
11	Time & Work	44					
12	Pipe & Cistern	46					
13	Speed Time & Distance	49					
14	Boat & Stream	52					
15	Simple Interest	57					
16	Compound Interest	60					
17	Age Problems	66					
18	Partnership	71					
19	Mensuration	73					
20	Linear Equations	82					
21	Data Interpretation	84					
22	Probability	100					
23	Introduction to Computer	109					

Table of Content

S No.	Chapter Title					
24	Computer Working System, Input, Output and Storage	112				
25	Computer System	117				
26	Computer Organization	120				
27	Computer Languages	123				
28	Computer Software	125				
29	Operating System	126				
30	Microsoft Windows, Its Different Versions and Its Basic Components	128				
31	Word Processing Software (Microsoft Word)	130				
32	Microsoft Power Point (M.S. Power Point)	132				
33	Microsoft Excel (M.S. Excel) (Spreadsheet Software)	134				
34	Internet	140				
35	Computer Networking	144				
36	Network Topology	146				
37	Website	148				
38	Database	151				
39	Information and Communication Technology	157				
40	Social Networking Sites	171				
41	Word Abbreviation	176				

Simplification

- In simplification, we represent the given data in a simple form, such as the data is done in fraction, in decimal, in division, in power and by solving or changing the mathematical operation.
- If different types of operations are given on some number, then how can

Divide (/)

- The first of all these mathematical operations is V which means Vinculum (line bracket). If there is a line bracket in the question, then first we will solve it and then (BODMAS) Rule will work in it.
- B (Bracket) in the second place means brackets which can be –
 - 1. Small bracket ()
 - 2. Middle/curly bracket { }
 - 3. Big bracket/[]
- First the small brackets, then the curly bracket, and then the big brackets are solved.
- In the third place is "O" which is formed from "of" or "order", which means "multiply" or "of".
- In the fourth place is "D" which means "Division", in the given expression do the first division in different actions if given.

we solve it so that the answer to the question is correct, for that there is a rule which we call the rule of VBODMAS.

• Which operation we should do first, it decides the rule of VBODMAS.

Multiplication (×) Subtraction (–)

- There is "M" in the fifth place which means "Multiplication", in the given expression after "Division" we will do "Multiplication".
- Sixth position is held by "A" which is related to "Addition". Addition action takes place after division and multiplication.
- There is "S" in the seventh place which is made of "Subtraction".

Q. Simplify –

$$3\frac{1}{4} \div \left\{1\frac{1}{4} - \frac{1}{2}\left(2\frac{1}{2} - \frac{1}{4} - \frac{1}{6}\right)\right\}\right] \div \left(\frac{1}{2} \text{ of } 4\frac{1}{3}\right)$$

Sol: Step 1 – Convert the mixed fraction into simple fraction

$$\left[\frac{13}{4} \div \left\{\frac{5}{4} - \frac{1}{2}\left(\frac{5}{2} - \frac{1}{4} - \frac{1}{6}\right)\right\}\right] \div \left(\frac{1}{2} \text{ of } \frac{13}{3}\right)$$

Now, according to VBODMAS -

Step 2 –

$$\frac{13}{4} \div \left\{ \frac{5}{4} - \frac{1}{2} \left(\frac{5}{2} - \frac{3 \cdot 2}{12} \right) \right\} \right] \div \left(\frac{1}{2} \text{ of } \frac{13}{3} \right)$$

Step 3 –

$$\left[\frac{13}{4} \div \left\{\frac{5}{4} - \frac{1}{2}\left(\frac{5}{2} - \frac{1}{12}\right)\right\}\right] \div \frac{13}{6}$$
Step 4 –

$$\left[\frac{13}{4} \div \left\{\frac{5}{4} - \frac{1}{2} \times \left(\frac{30 - 1}{12}\right)\right\}\right] \div \frac{13}{6}$$
Step 5 –

$$\left[\frac{13}{4} \div \left\{\frac{5}{4} - \frac{1}{2} \times \frac{29}{12}\right\}\right] \div \frac{13}{6}$$
Step 6 –

$$\left[\frac{13}{4} \div \left\{\frac{30-29}{24}\right\}\right] \div \frac{13}{6}$$

Step 7 –
$$\left[\frac{13}{4} \div \frac{1}{24}\right] \div \frac{13}{6}$$

Step 8 –
$$\left[\frac{13}{4} \times 24\right] \div \frac{13}{6}$$

Step 9 –
$$13 \times 6 \times \frac{6}{13}$$

= 36 Ans.

Algebraic Formulas –

1.
$$(a + b)^2 = a^2 + 2ab + b^2$$

2. $(a - b)^2 = a^2 - 2ab + b^2$
3. $(a + b)^2 + (a - b)^2 = 2(a^2 + b^2)$
4. $(a^2 - b^2) = (a + b) (a - b)$
5. $a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + bc + ca)$
6. $a^2 + \frac{1}{a^2} = \left(a + \frac{1}{a}\right)^2 - 2$
7. $a^2 + b^2 + c^2 - ab - bc - ca = \frac{1}{2} \left[(a - b)^2 + (b + c)^2 + (c - a)^2 \right]$
8. $a^3 + b^3 = (a + b)^3 - 3ab (a + b) = (a + b) (a^2 - ab + b^2)$
9. $a^3 - b^3 = (a - b)^3 + 3ab (a - b) = (a - b) (a^2 + ab + b^2)$
10. $a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)$
 $= \frac{1}{2} (a + b + c) \left\{ (a - b)^2 + (b - c)^2 + (c - a)^2 \right\}$
If $a + b + c = 0$, then
 $a^3 + b^3 + c^3 = 3abc$

11.
$$a^{3} + \frac{1}{a^{3}} = \left(a + \frac{1}{a}\right)^{3} - 3\left(a + \frac{1}{a}\right)$$

12. $a^{3} - \frac{1}{a^{3}} = \left(a - \frac{1}{a}\right)^{3} + 3\left(a - \frac{1}{a}\right)$

Square and Square Root Table

Square	Square Root	Square	Square Root
1 ² = 1	$\sqrt{1} = 1$	16 ² = 256	$\sqrt{256} = 16$
$2^2 = 4$	$\sqrt{4} = 2$	17 ² = 289	$\sqrt{289} = 17$
3 ² = 9	$\sqrt{9}=3$	18 ² = 324	$\sqrt{324} = 18$

4 ² = 16	$\sqrt{16} = 4$	19 ² = 361	$\sqrt{361} = 19$
5 ² = 25	$\sqrt{25} = 5$	$20^2 = 400$	$\sqrt{400} = 20$
6 ² = 36	$\sqrt{36} = 6$	21 ² = 441	$\sqrt{441} = 21$
7 ² = 49	$\sqrt{49} = 7$	$22^2 = 484$	$\sqrt{484} = 22$
8 ² = 64	$\sqrt{64} = 8$	23 ² = 529	$\sqrt{529} = 23$
9 ² = 81	$\sqrt{81} = 9$	24 ² = 576	$\sqrt{576} = 24$
$10^2 = 100$	$\sqrt{100} = 10$	25 ² = 625	$\sqrt{625} = 25$
11 ² = 121	$\sqrt{121} = 11$	26 ² = 676	$\sqrt{676} = 26$
$12^2 = 144$	$\sqrt{144} = 12$	27 ² = 729	$\sqrt{729} = 27$
13 ² = 169	$\sqrt{169} = 13$	28 ² = 784	$\sqrt{784} = 28$
14 ² = 196	$\sqrt{196} = 14$	29 ² = 841	$\sqrt{841} = 29$
15 ² = 225	$\sqrt{225} = 15$	$30^2 = 900$	$\sqrt{900} = 30$

Cube and Cube Root Table

Cube	Cube Root	Cube	Cube Root
1 ³ = 1	$\sqrt[3]{1} = 1$	16 ³ = 4096	∛4096 = 16
2 ³ = 8	$\sqrt[3]{8} = 2$	17 ³ = 4913	∛4913 = 17
3 ³ = 27	$\sqrt[3]{27} = 3$	18 ³ = 5832	$\sqrt[3]{5832} = 18$
4 ³ = 64	$\sqrt[3]{64} = 4$	19 ³ = 6859	∛6859 = 19
5 ³ = 125	$\sqrt[3]{125} = 5$	20 ³ = 8000	∛8000 = 20
6 ³ = 216	$\sqrt[3]{216} = 6$	21 ³ = 9261	∛9261 = 21
7 ³ = 343	³ √343 = 7	22 ³ = 10648	∛10648 = 22
8 ³ = 512	$\sqrt[3]{512} = 8$	23 ³ = 12167	∛12167 = 23
9 ³ = 729	∛729 = 9	24 ³ = 13824	∛13824 = 24
10 ³ = 1000	$\sqrt[3]{1000} = 10$	25 ³ = 15625	∛15625 = 25
11 ³ = 1331	$\sqrt[3]{1331} = 11$	26 ³ = 17576	∛17576 = 26
12 ³ = 1728	$\sqrt[3]{1728} = 12$	27 ³ = 19683	∛19683 = 27
13 ³ = 2197	∛2197 = 13	28 ³ = 21952	∛21952 = 28
14 ³ = 2744	$\sqrt[3]{2744} = 14$	29 ³ = 24389	∛24389 = 29
15 ³ = 3375	∛3375 = 15	30 ³ = 27000	∛27000 = 30

Arithmetic Progression

The series in which each term can be found by adding or subtracting with its preceding term is

called the arithmetic progression.

E.g. 2, 5, 8, 11,

nth term of an Arithmetic Progression

 $T_n = a + (n - 1) d$ Where, a = First term d = Common difference (2nd term - 1st term) Addition of nth terms of an Arithmetic Progression –

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

If the first and last term is known -

$$S_n = \frac{n}{2} [a + \ell]$$

Where, $\ell = Last term$

Arithmetic progression between the two variables

 $A = \frac{a+b}{2}$ [The arithmetic progression of a & b is A]

Geometric Progression

If the ratio of each term of the series to its preceding term is a certain variable, then it is called a geometric series. This fixed variable is called the common ratio.

nth term of Geometric Series –

 $T_n = a.r^{n-1}$ Where, a = First term

- r = Common ratio
- n = Number of terms

Addition of nth terms of Geometric Series –

$$S_{n} = a \left(\frac{1 - r^{n}}{1 - r} \right); \text{ When } r < 1$$
$$S_{n} = a \left(\frac{r^{n} - 1}{r - 1} \right); \text{ when } r > 1$$

- 1. Geometric series between two variables $G = \sqrt{ab}$
- 2. If the arithmetic mean and geometric mean between two positive quantities a and b are A and G, then A > G, $\frac{a+b}{2} > \sqrt{ab}$

Harmonic Progression

If the reciprocals of the terms of a series are written in the same order and it is in arithmetic progression, then this is known as harmonic series. nth term of a Harmonic Progression –

$$T_n = \frac{1}{a + (n - 1)d}$$

Harmonic series (H) = $\frac{2ab}{a + b}$

Relation between Arithmetic Mean, Geometric Mean and Harmonic Mean

Let A, G and H be the arithmetic mean, geometric mean and harmonic mean between two

quantities a and b respectively, then

 $G^2 = AH$ and A > G > H

Practice Question

Q.1 The value of $24 \times 2 \div 12 + 12 \div 6$			
	\div (15 \div 8 \times 4) of (28 ÷ 7 of 5) is –	
	(a) 4 <mark>32</mark> 75	(b) 4 8 75	
	(c) $4\frac{2}{3}$	(d) $4\frac{1}{6}$	
Q.2	Simplify –		
	$\left[3\frac{1}{4}\div\left\{1\frac{1}{4}-\frac{1}{2}\right.\right]$	$\left(2\frac{1}{2}-\frac{1}{4}-\frac{1}{6}\right)\right\} \left] \div \left(\frac{1}{2} \text{ of } 4\frac{1}{3}\right)$	
Q.3	Evaluate –		
	$2\frac{3}{4} \div 1\frac{5}{6} \div \frac{7}{8}$	$\left(\left(\frac{1}{3}+\frac{1}{4}\right)+\frac{5}{7}\div\frac{3}{4}\text{ of }\frac{3}{7}\right)$	
	(a) <u>56</u> 77	(b) $\frac{49}{80}$	
	(c) $\frac{2}{3}$	(d) 3 ² /9	
Q.4	If $(102)^2 = 1$.0404 then the value of	
	$\sqrt{104.04} + $	$1.0404 + \sqrt{0.010404}$ is	
	equals to?		
	(a) 0.306	(b) 0.0306	
	(c) 11.122	(d) 11.322	
Q.5	If a = 64 & b	= 289 then find the value	
	of $\int \sqrt{\sqrt{a} + \sqrt{a}}$	$\overline{\sqrt{b}} - \sqrt{\sqrt{\sqrt{b}} - \sqrt{a}} \Big)^{\frac{1}{2}}$	

Q.6	The cube root of 175616 is 56 then find the value of $\frac{3}{175616} + \frac{3}{0} \frac{000175616}{2}$			Q.12	$\left(\sqrt{2} + \frac{1}{\sqrt{2}}\right)^2 e^{-\frac{1}{\sqrt{2}}}$	quals to	c ?
Q.7	(a) 0.168 (c) 6.216 What is the smallest	(b) 62 (d) 6.2 t numl	.16 116 Der to be		(a) $2\frac{1}{2}$ (c) $4\frac{1}{2}$		(b) $3\frac{1}{2}$ (d) $5\frac{1}{2}$
	added to 710 so becomes a perfect cu (a) 29 (c) 11	that be? (b) 19 (d) 21	the sum	Q.13	$\frac{2}{0.051 \times 0.051 \times 0}{0.051 \times 0.051 - 0}$	of .051+0. .051×0.	2 041×0.041×0.041 041+0.041×0.041
Q.8	Find the value of the $4 - \frac{5}{1 + \frac{1}{3 + \frac{1}{2 + \frac{1}{4}}}}$ is	followi	ng –	Q.14	(a) 0.92 (c) 0.0092 Find the sum less than 50 ? (a) 400	of all th	(b) 0.092 (d) 0.00092 ne multiples of 3 (b) 408
	(a) $\frac{1}{8}$ (c) $\frac{1}{2}$	(b) $\frac{1}{64}$ (d) $\frac{1}{64}$		Q.5	(c) 404 How many te following arith	erms a imetic s	(d) 412 re there in the series?
Q.9	16 If $2 = x + \frac{1}{1 + \frac{1}{3 + \frac{1}{4}}}$ the	32 en find	2 the value	Q.16	7, 13, 19, If the sum of t the sum of the	, 2 wo nui eir squa	mbers is 22, and ares is 404, then
	4 of x ? (a) $\frac{18}{17}$ (c) $\frac{13}{17}$	(b) $\frac{21}{17}$ (d) $\frac{12}{17}$	200	Q.17	(a) 40 (c) 80 When a two di by the sum of 424 When th	git num its digit	(b) 44 (d) 89 hber is multiplied ts, the product is her obtained by
Q.10	999 <mark>998</mark> ×999 equals (a) 998999 (c) 989999	to ? (b) 99 (d) 99	9899 9989		interchanging by the sum of 280. What is t the number?	its dig the dig the sum	its is multiplied gits, the result is n of the digits of
Q.11	Find the value of $\frac{(0.0)}{0}$ (a) 0.02 (c) 0.4	.03 – (0 .03 – 0. (b) 0.0 (d) 0.0	01) ⁻ 01 04 04		(a) 7 (c) 6		(b) 9 (d) 8
			Answe	er Key			
Q.1	(d)	Q.2	$7\frac{1}{5}$	Q.3	(d)	Q.4	(d)
Q.5 Q.9 Q.13 Q.17	(a) (b) (b) (d)	Q.6 Q.10 Q.14	(c) (a) (b)	Q.7 Q.11 Q.15	(b) (d) 34	Q.8 Q.12 Q.16	(a) (c) (a)

W = {0, 1, 2, 3, 4, 5,} **Prime Numbers** – Which have only two The product of four consecutive natural forms - $1 \times$ numbers E.g. - {2, 3, 5, 7, 11, 13, 17, 19.....} numbers is always exactly divisible by 24. Where, 1 isn't a Prime Number. **Even Numbers** The digit 2 is only even prime number. Numbers which are completely divisible by 2 3, 5, 7 is the only pair of consecutive odd are called even numbers. prime numbers. n^{th} term = 2n Total prime numbers between 1 to 25 = 9• Sum of first n even natural numbers = n(n+1)Total prime numbers between 25 to 50 = 6• There are total of 15 prime numbers Sum of square of first n even natural numbers = $\frac{2n(n+1)(2n+1)}{3}$ between 1-50. There are total of 10 prime numbers between 51 - 100. $\left\{n = \frac{\text{Last term}}{2}\right\}$ So there are total 25 prime numbers from 1-100. Total prime numbers from 1 to 200 = 46**Odd Numbers** Total prime numbers from 1 to 300 = 62The numbers which are not divisible by 2 are Total prime numbers from 1 to 400 = 78odd numbers. Total prime numbers from 1 to 500 = 95Sum of first n odd numbers = n^2 **Co-prime Numbers** $\left\{ n = \frac{\text{Last term} + 1}{2} \right\}$ Numbers whose HCF is only 1. E.g. - (4,9), (15, 22), (39, 40) HCF = 1**Natural Numbers** Sum of first n natural numbers = $\frac{n(n+1)}{2}$ Perfect Number A number whose sum of its factors is equal to that number (except the number itself in Sum of square of first n natural numbers the factors) $=\frac{n(n+1)(2n+1)}{2n+1}$ E.g. - $6 \rightarrow 1, 2, 3 \rightarrow$ Here $1 + 2 + 3 \rightarrow 6$ $28 \rightarrow 1, 2, 4, 7, 14 \rightarrow 1 + 2 + 4 + 7 + 14 \rightarrow 28$ Sum of cube of first n natural numbers = **Rational Numbers** $\left[\frac{n(n+1)}{2}\right]^2$ Numbers that can be written in the form of P/Q, but where Q must not be zero and P and Q must be integers. The difference of the squares of two consecutive natural numbers is equal to E.g. - $2/3, 4/5, \frac{10}{-11}, \frac{7}{2}$ their sum. **Example** - $11^2 = 121$ **Irrational Numbers** $12^2 = 144$

These cannot be displayed in P/Q form. E.g. - $\sqrt{2}$, $\sqrt{3}$, $\sqrt{11}$, $\sqrt{19}$, $\sqrt{26}$...

 $11 + 12 \rightarrow 23$

Difference 144 – 121 = 23

Perfect square numbers \downarrow Unit Digit which can be of square Which can't be square 0 1 4 5 or 25 6

9

• The last two digits of the square of any number will be the same as the last two digits of the square of numbers 1-24.

2 -----3 -----

7 -----

8 -----

Note: Therefore, everyone must remember the squares of 1-25.

Convert to Binary and Decimal – 1. Convert Decimal Number to Binary							Binary	Fi	Finding the Number of Divisors or Number			
	1. Convert Decimal Number to Binary Number To find the binary number equivalent to a decimal number, we continuously divide the given decimal number by 2 until we get 1 as the final quotient. E.g. 2 89 $2 \times 44 = 88$; $89 - 88 = 1$ 2 44 $2 \times 22 = 44$; $44 - 44 = 0$ $2 \times 44 = 22 \times 22 = 42$						lent to uously r by 2 38 = 1 4 = 0	of Fi by Oi di Ex	First we will do the prime factorization of the number and write it as Power and multiply by adding One to each power, then the number of divisors will be obtained. Ex: By how many total numbers can 2280 be completely divided? Sol. $2280 = 2^3 \times 3^1 \times 5^1 \times 19^1$			
	2	11	2	× 11 -	- ZZ ; 4 10 · 14	22 – 2 1 <u>–</u> 10	22 = 0		Number of divisors = $(3 + 1)(1 + 1)(1 + 1)$			
	2	5	2	×2=	4:5-	4 = 1			1) $(1 + 1)$			
	2	$2 \times 1 = 2 \cdot 2 - 2 = 0$							= 4 × 2 × 2 × 2 = 32			
2.	 2 2 2 2 2 2 2 2 2 2 0 1 Final quotient Hence, binary number equivalent to 89 = (1011001)2 Convert Binary to Decimal Nubmer In binary system the value of 1 when it moves one place to its left every time it doubles itself and wherever 0 comes its value is 0. 					t lent t ubme f 1 w very f 0 cor	to 89 = r /hen it time it mes its	Fi 351	nd the unit's digit When the number is in the form of power – When the unit digit of Base is 0, 1, 5 or 6, the unit digit of the result remains the same for any natural power. When the unit digit of base is 2, 3, 4, 7, 8, or 9, divide the power by 4 and put the same power on the unit digit of the base as the			
	$ \begin{array}{c} 1 \\ 2^6 \\ \text{Now} \\ (1011) \\ 2^3 + 0 \\ = 64 - \\ = 89 \end{array} $	$ \begin{array}{c c} 0 \\ 2^{5} \\ 1001)_{2} \\ 0 \times 2^{2} + \\ + 0 + 10 \end{array} $	$ \begin{array}{c} 1 \\ 2^4 \\ = 1 \times 1 \\ 0 \times 2^1 \\ 6 + 8 + \end{array} $	$\frac{1}{2^{3}}$ $2^{6} + 0$ $+ 1 \times$ $\cdot 8 + 0$	0 2 ² × 2 ⁵ + 2 ⁰ + 1 {	0 2^{1} 1×2 $2^{0} = 2$	1 2 ⁰ 2 ⁴ × 1 × 1}	2.	remainder. When the power is rounded off to 4, then the 4 th power will be placed on the unit digit of the base. In the form of simplification – Write the unit digit of each number and simplify it according to the symbol, the result that will come will be its unit digit			

Divide by Power of Numbers (Finding the Divisor)

1. If $a^{n} + b^{n}$ is given – If n is odd, then (a+b) will be its divisor. 2. If $a^{n} - b^{n}$ is given – Divisor (when n is odd) \rightarrow (a-b) Divisor (when n is even) \rightarrow (a – b) or (a + b) or both. 1. If $a^{n} \div (a - 1)$ then the remainder always be 1. 2. $a^{n} \div (a + 1)$ [If n is an even then the remainder always be 1. 2. $a^{n} \div (a + 1)$ [If n is an even then the remainder always be 3. 3. If ($a^{n} + a$) \div (a – 1) then the remainder always be 2. 4. ($a^{n} + a$) \div (a + 1) [If n is an even then the remainder always be 2. [If n is an odd then the remainder always be (a – 1)]

Terminating Decimal

Those numbers which end after a few digits after the decimal like - 0.25, 0.15, 0.375 can be written in a fraction number.

Non-Terminating Decimal

Those numbers which continue after the decimal and can be of two types.

0.3333, 0.7777, 0.183183183.....

Devestive	Numbers that never end after				
Repeating	the decimal, but repeat, till				
	infinity. It can be written in				
	fractions.				
Non	Numbers that never end after				
Repeating	the decimal point, but they do				
Decimal	not repeat their numbers.				

Recurring Decimal Fraction

That decimal fraction is the repetition of one or more digits after the decimal point, then one or more digits are repeated after the dot.

Eg. $\frac{1}{3} = 0.333..., \frac{22}{7} = 3.14285714....$ To represent such fractions, a line is drawn over the repeating digit. $0.35\overline{24} = \frac{3524 - 35}{9900} = \frac{3489}{9900} = \frac{1163}{3300}$ $\frac{22}{7} = 3.14285714.... = 3.14\overline{2857}$ It is called bar.

• Convert pure recurring decimal fraction to simple fraction as follows –

$$0.\overline{P} = \frac{P}{9}$$
 $0.\overline{pq} = \frac{pq}{99}$ $0.\overline{pqr} = \frac{pqr}{999}$

 Convert a mixed recurring decimal fraction to an ordinary fraction as follows –

$$0.p\overline{q} = \frac{pq-p}{90} \qquad 0.pq\overline{r} = \frac{pqr-pq}{900}$$
$$0.pq\overline{r} = \frac{pqr-pq}{900} \qquad 0.pq\overline{r} = \frac{pqr-pq}{900}$$

Example -

(i)
$$0.\overline{39} = \frac{39}{99} = \frac{13}{33}$$

(ii) $0.6\overline{25} = \frac{625 - 6}{990} = \frac{619}{990}$
(iii) $0.35\overline{24} = \frac{3524 - 35}{9900} = \frac{3489}{9900} = \frac{1163}{3300}$

Symbol of th	ne Roman Method			subtracting it from the
1 –	→ 1			remaining number, if the
2 –	→ II			number is a multiple of 0 or 7
3 –	→ III			or if any digit is repeated in a
4 –	→ IV			multiple of 6, then the
5 –	→ V			number will be divisible by 7.
6 –	→ VI			E.g. 222222, 44444444444,
7 –	→ VII			7854
8 –	→ VIII		Rule of 8	If the last three digits of a
9 –	→ IX			number are divisible by 8 or
10 –	→ X			the last three digits are '000'
20 –	→ XX			(zero).
30 –	→ XXX			E.g. 9872, 347000
40 –	→ XL		Rule of 9	If the sum of the digits of a
50 –	→ L			number is divisible by 9, then
100 –	→ C			the whole number will be
500 –	→ D			divisible by 9.
1000 –	→ M		Rule of 10	The last digit should be zero
Rule of Divis	sibility			(0).
Rule of 2	The last digit is an even		Rule of 11	If the difference between the
	number or zero (0) as - 236,			sum of digits at odd places
	150, 1000004			and sum of digits at even
Rule of 3	If the sum of the digits of a	7		places is zero (0) or 11 or a
	number is divisible by 3, then			multiple of 11.
	the whole number will be	200	h the	E.g. 1331, 5643, 8172659
	divisible by 3.	,a5	Rule of 12	Composite form of divisible
	E.g. 729, 12342, 5631			by 3 and 4.
Rule of 4	Last two digits are zero or		Rule of 13	Repeating the digit 6 times, or
	divisible by 4.			multiplying the last digit by 4
	E.g. 1024, 58764, 567800			and adding it to the
Rule of 5	The last digit is zero or 5.			remaining number, if the
	E.g. 3125, 625, 1250			number is divisible by 13,
Rule of 6	If a number is divisible by			then the whole number will
	both 2 and 3 then it is also			be divisible by 13.
	divisible by 6.			E.g. 222222, 17784
	E.g. 3060, 42462, 10242			
Rule of 7	After multiplying the last digit			
	of a number by 2 and			
		-		

	Practice Questions	Q.6	If the product of first three and last
Q.1	If $\frac{3}{4}$ of a number is 7 more than $\frac{1}{6}$ of		three of 4 consecutive prime numbers is 385 and 1001, then find the greatest prime number
	that number, then what will be $\frac{5}{3}$ of	Q.7	What will be the sum of the even
	that number?	0.0	numbers between 50 and 100?
	(a) 12 (b) 18	Q.8	between 50 and 1002
• •	(c) 15 (d) 20	Q.9	In a division method, the divisor is 12
Q.2	If the sum of two numbers is a and	-	times the quotient and 5 times the
	their product is a then their		remainder. Accordingly, if the
	1 1 h		remainder is 36, then what will be the
	(a) $\frac{1}{a} + \frac{1}{b}$ (b) $\frac{5}{a}$		dividend?
			(a) 2706 (b) 2796 (c) 2736 (d) 2826
	(c) $\frac{d}{dt}$ (d) $\frac{d}{dt}$	0.10	What is the unit digits of $(3694)^{1739} \times$
Q.3	The sum of two numbers is 75 and		$(615)^{317} \times (841)^{491}$
	their difference is 25, then what will		(a) 0 (b) 2
	be the product of those two		(c) 3 (d) 5
	numbers?	Q.11	What will be written in the form of $\frac{p}{p}$
	(a) 1350 (b) 1250		q
0.4	(c) 1000 (d) 125		of 18.484848?
Q.4	Divide 150 into two parts such that		(a) $\frac{462}{25}$ (b) $\frac{610}{22}$
	the sum of their reciprocal is $\frac{3}{112}$.		200 609
	Calculate both parts.		(c) $\frac{11}{11}$ (d) $\frac{11}{33}$
	(a) 50, 90 (b) 70, 80		0.936-0.568
	(c) 60, 90 (d) 50, 100	Q.12	Put $$
Q.5	If the sum of any three consecutive	51	rational number.
	odd natural numbers is 147, then the	Q.13	What will be the common factor of
	middle number will be –		$\left\{ \left(127\right)^{127} + \left(97\right)^{127} \right\} \text{ and } \left\{ \left(127\right)^{97} + \left(97\right)^{97} \right\} \right\}$
	(a) 47 (b) 48 (c) 40 (d) 51		(a) 127 (b) 97
	(0) 51		(c) 30 (d) 224
		l	

		Answer Key	
Q.1 (d)	Q.2 (c)	Q.3 (b)	Q.4 (b)
Q.5 (c)	Q.6 13	Q.7 1800	Q.8 1875
Q.9 (c)	Q.10(a)	Q.11 (b)	Q.12 2024 17205
Q.13 (d)			

3Least Common Multiple and HighestCHAPTERCommon Factor (LCM & HCF)

Factor: A number is said to be a factor of another if it completely divides the other. Like 3 and 4 are factors of 12.

Common Factor: The number which completely divides two or more given numbers is called the common factor of those numbers. Thus, one common factor of 9, 18, 21 and 33 is 3.

LCM (Least common multiple)

- The smallest number which is completely divisible by the given numbers is called LCM.
- Finding the LCM of the number having power - After factoring the prime, we will write it in the form of quotient and the number of primes that will be used will be written as multiplication and will keep the maximum power on it.

Ex-1: Find LCM of (12)¹⁶, (18)¹⁵, (30)¹⁸

Sol. $(12)^{16} = (2 \times 2 \times 3)^{16} = (2^2 \times 3)^{16} = 2^{32} \times 3^{16}$ $(18)^{15} = (2 \times 3 \times 3)^{15} = (2 \times 3^2)^{15} = 2^{15} \times 3^{30}$ $(30)^{18} = (2 \times 3 \times 5)^{18} = 2^{18} \times 3^{18} \times 5^{18}$ Therefore, LCM = $2^{32} \times 3^{30} \times 5^{18}$ Ans. LCM of fractions

 $LCM = \frac{LCM \text{ of Numerator}}{HCF \text{ of Denominator}}$

Ex-2: Find LCM of
$$\frac{1}{2}$$
 and $\frac{5}{8}$?
Sol. - LCM = $\frac{\text{LCM of 1 and 5}}{\text{HCF of 2 and 8}} \Rightarrow \frac{5}{2}$

HCF (Highest Common Factor)

- The greatest number by which all the given numbers are completely divisible is called HCF.
- Like H.C.F. of 18 and 24 is 6.
- Ex.1: If the H C F of two numbers is found by the division method, then the quotient is 3, 4, and 5 respectively. If the mean of two numbers is 18, then find the numbers.
- Sol. There are two numbers a and b

The last denominator is HCF. d = 18 c = $5 \times d = 5 \times 18 = 90$ a = $(4 \times c) + d$ = $(4 \times 90) + 18 = 378$ b = 3a + c= $(3 \times 378) + 90 = 1134 + 90 = 1224$ So, the numbers are 1224 and 378

To find the HCF of a number with powers-

• First factor it into the base and write it as a power, and write it as a multiplication of all prime numbers in the base and put the lowest power on it.

Ex:1	Find HCF of (24) ⁸ , (36) ¹² , (18) ¹⁶	
Sol.	$24 = (2^3 \times 3)^8 = 2^{24} \times 3^8$	Q.1
	$36 = (2^2 \times 3^2)^{12} = 2^{24} \times 3^{24}$	0.2
	$18 = (2 \times 3^2)^{16} = 2^{16} \times 3^{32}$	Q.2
	So, HCF = $2^{16} \times 3^8$	
Findi	ng the HCF of a Fraction –	Q.3
	HCF of Numerator	
HCF=	LCM of Denominator	Q.4
F	18 12 6	
EX:	<u>25</u> , <u>7</u> , <u>35</u>	
Sol.	HCF of 18, 12, 16 LCM of 25, 7, 35	
• HC	CF of Addition of any two numbers and	
th	eir L.C.M is equal to the HCF of given	
tw	o numbers.	
Le	t the two numbers be x and y, and	Q.5
th		
Th	erefore, x = Ha	
	y = Hb	
W	here a and b are mutually prime.	
LC	M of x, y = Hab	
	and $x + y = H(a+b)$	Q.6
No	w 'a' and 'b' are mutually prime	
nu	mbers, then (a + b) and ab will also be	Q.7
pr	mes with each other. So we can	sh t
со	nclude that the HCF of H(a + b) and Hab	
is	H which is also the H.C.F of x and y.	
Relat	ion between LCM and HCF: -	
LCM >	< HCF = Product of both numbers	
Ex.1	The LCM and HCF of two numbers are	
	420 and 28. If one number is 84, find	Q.8
	the other number –	
Sol.	Second Number = $\frac{420 \times 28}{84}$ = 140	1. 14
• Th	e smallest number for x, y, z in which	4. (c)
th	e remainder r is left after dividing,	4
Th	e answer for this will be (LCM of x, y, z + r).	7. - 35

	Practice	e Questions				
Q.1	What is the pof 84, 126, 14	greatest common factor 10 ?				
Q.2	Find HCF of x ⁶	$x^{5} - 1$ and $x^{4} + 2x^{3} - 2x^{1} - 1$				
	(a) x ² + 1	(b) x-1				
	(c) x ² -1	(d) x+1				
Q.3	What will be th	ne LCM of 15, 18, 24, 27, 36?				
Q.4	Six bells simultaneous respectively a 10, 12 second in 30 minutes (a) 4 times (b) 10 times (c) 16 times (d) None of th	started ringing sly, if these bells rang at an interval of 2, 4, 6, 8, ds, then how many times s will they ring together? he above				
Q.5	Three person on a 11 km l same direction and 8 km/hr much time we the starting p	is start walking together ong circular path in the on. Their speed is 4, 5.5 respectively. After how ill they meet together at point?				
Q.6	Find the great 1.75, 5.6 and	atest common factor of 7.				
Q.7	The sum of thighest common least common be the sum of numbers?	wo numbers is 36, their mon factor is 3 and the n factor is 105, what will f the reciprocals of these				
	(a) $\frac{2}{35}$ (c) $\frac{4}{25}$	(b) $\frac{3}{25}$ (d) $\frac{2}{25}$				
Q.8	35 25 Q.8 Find two such three-digit numbers whose L.C.M. is 5760 and H.C.F. is 80? Answer Key					
1.14	2, (c)	3. 1080				

5. 22 Hours 6. 0.35

8. 640 and 720

Surds and Indices

- <u>Surds</u> Those quantities whose definite value cannot be determined precisely, they are called surds.
- If 'a' is a rational number and 'm' is an integer then the mth root of a will be an irrational number which would be $a^{\frac{1}{m}}$ or $\sqrt[m]{a}$ where $\sqrt[m]{a}$ called a surds.
 - E.g. $\sqrt{2}$, $\sqrt{3}$ etc.
- There are many forms of surds, for example - √, ∛, ∜, √, √....
- $a^{\overline{m}}$ is called a surds containing the mth power.
- When both the power and the surds number of the root (i.e., the number written under the root) are equal, then the surds are said to be homogeneous. E.g.- \sqrt{x} , $3\sqrt{x}$, $7\sqrt{x}$
- When the powers of the surds are different or the surds numbers are different or both the powers and the surd numbers are different, then they are called heterogeneous.

E.g. - $\sqrt[3]{xy}$, $\sqrt[3]{x}$, $\sqrt[2]{5y}$ etc.

When the all variables are in the form of surds

 If the number written in the surds cannot have two consecutive factors, then assuming the whole sum equal to x, square the two sides and convert the quadratic equation into the form (ax² + bx + c = 0). • Then, according to Shri Dharacharya formula – $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Operations on Surds

(1) Addition and subtraction of surds

Only homogeneous surds can be added or subtracted.

E.g.
$$\sqrt{75} + \sqrt{48}$$

Sol.- $\sqrt{25 \times 3} + \sqrt{16 \times 3}$
 $= 5\sqrt{3} + 4\sqrt{3}$
 $= 9\sqrt{3}$

E.g.
$$\sqrt{27} - \sqrt{12}$$

Sol. $\sqrt{9 \times 3} - \sqrt{4 \times 3}$
 $= 3\sqrt{3} - 2\sqrt{3}$
 $= \sqrt{3}$

(2) Multiplication of surds

Multiplication of surds is possible only when their powers are equal.

E.g.
$$\sqrt[3]{2} \times \sqrt[3]{5} \times \sqrt[3]{4}$$

Sol. $\sqrt[3]{2 \times 5 \times 4}$
= $\sqrt[3]{40}$

E.g. Divide
$$12 \times 4^{1/3}$$
 by $3\sqrt{2}$
Sol. $\frac{12 \times 4^{1/3}}{3\sqrt{2}} = \frac{4 \times 4^{1/3}}{2^{1/2}} = \frac{4 \times 4^{2/6}}{2^{3/6}}$
$$= 4 \times \left[\frac{4^2}{2^3}\right]^{1/6} = 4 \times \left[\frac{16}{8}\right]^{1/6}$$
$$= 4 \times 2^{1/6}$$

Some Important Rules for Surds

(1)
$$\sqrt{a} \times \sqrt{a} = a$$

(2) $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$
(3) $\sqrt{a^2 \times b} = a\sqrt{b}$
(4) $(\sqrt{a} + \sqrt{b})^2 = a + b + 2\sqrt{ab}$
(5) $(\sqrt{a} - \sqrt{b})^2 = a + b - 2\sqrt{ab}$
(6) $(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) = a - a$
(7) $\sqrt{2} = 1.41421$
(8) $\sqrt{3} = 1.73205$
(9) $\sqrt{5} = 2.23607$

Conjugate

(10) $\sqrt{6} = 2.44949$

 Surds with two terms which are the same but the symbols used between those two terms are different, then such surds are called conjugate surds.

-b

 To find the value of such quantities, multiply both the numerator and the denominator by the conjugate of the denominator.

E.g. Find the value of $\frac{\sqrt{3}-1}{\sqrt{3}+1}$ UNC2

Sol.

$$\Rightarrow \frac{\sqrt{3}-1}{\sqrt{3}+1} \times \frac{\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)} = \frac{\left(\sqrt{3}-1\right)^2}{\left(\sqrt{3}\right)^2 - (1)^2}$$
$$= \frac{3+1-2\sqrt{3}}{3-1}$$
$$= \frac{4-2\sqrt{3}}{2}$$
$$= \frac{2(2-\sqrt{3})}{2}$$
$$= 2-\sqrt{3}$$

Comparison of Surds (Greatest and Smallest)

- To find the greater or smallest of the given surds, we equalize the exponents and compare the bases.
 - E.g. Which one is greater among $\sqrt[3]{5}, \sqrt{4}, \sqrt[3]{6}$?

Sol. Here, power of
$$\sqrt[3]{5}$$
, $\sqrt{4}$, $\sqrt[3]{6}$ is 3, 2,
3 and their LCM = 6
 $\sqrt[3]{5} = \sqrt[6]{5^2} = \sqrt[6]{25}$
 $\sqrt{4} = \sqrt[6]{4^3} = \sqrt[6]{64}$
 $\sqrt[3]{6^2} = \sqrt[6]{36}$
Hence, the greatest number =

Indices – The number which is multiplied by itself multiple times is called the power of that number and that number is called the base.

Some Important Rules for Indices

 $\sqrt[6]{64} = \sqrt{4}$

- (i) $a^m = a \times a \times a \times ...$ m times (ii) $(a^m)^n = a^{mn}$ (iii) $a^m \times a^n = a^{(m+n)}$ (iv) $a^m \div a^n = a^{(m-n)}$ (v) $[(a^m)^n]^1 = a^{mn1}$ (vi) $a^{-m} = \frac{1}{a^m}$
- (vii) a° = 1 {If the power of any number is zero, then the value of that whole sum is 1.}

$$(viii) (a/b)^{-m} = (b/a)^{m}$$

- (ix) $a^{m} = b^{n}$ $a = (b)^{n/m}$ or $b = (a)^{m/n}$
- (x) $a^m = b$ then $a = b^{1/m}$

 If the power is in a different form, then to find the greatest or smallest value, we will take the LCM of the denominator of the power and multiply each power by the LCM and the one whose larger value comes will be greatest and the one whose smaller value comes will be smallest.

E.g.
$$(2)^{1/4}, (3)^{1/6}, (4)^{1/8}, (8)^{1/12}$$

Sol. $(2)^{\frac{1}{4} \times 24} = 2^6 = 64$
 $(3)^{\frac{1}{6} \times 24} = 3^4 = 81$
 $(4)^{\frac{1}{8} \times 24} = 4^3 = 64$
 $(8)^{\frac{1}{12} \times 24} = 8^2 = 64$

Hence, the greatest number is $3^{1/6}$ (Note – Here, the LCM of 4, 6, 8, 12 is 24)

Practice Question

- The value of $\sqrt{214} + \sqrt{107} + \sqrt{196}$ Q.1 (a) 23 (b) 15 (c) 24 (d) 18 What is the value of the following? Q.2 $\int 6 + \sqrt{6 + \sqrt{6 + \cdots \dots}}$ (a) 5 (b) 3 (c) 2 (d) 30 Find the value of the following? Q.3 $\sqrt{-\sqrt{3}+\sqrt{3}+8\sqrt{7+4\sqrt{3}}}$ (a) 2 (b) 4 (c) ±2 (d) -2 The value of $\frac{\sqrt{5}}{\sqrt{3}+\sqrt{2}} - \frac{3\sqrt{3}}{\sqrt{5}+\sqrt{2}} + \frac{2\sqrt{2}}{\sqrt{5}+\sqrt{3}}$ is Q.4 (a) $2\sqrt{10}$ (b) 0 (c) 2√6 (d) $2\sqrt{15}$
- The value of $\sqrt{2\sqrt[3]{4\sqrt{2\sqrt[3]{4....}}}}$ is Q.5 (b) 2^2 (a) 2 (c) 2^3 (d) 2^5 Which one is the greatest among Q.6 them $\sqrt{2}, \sqrt[3]{3}, \sqrt[4]{4}, \sqrt[6]{6}$? (a) $\sqrt{2}$ (b) ³√3 (d) ∜<u>6</u> (c) $\sqrt[4]{4}$ Q.7 Arrange the following in descending order (from greatest to smallest). $\sqrt[3]{4}, \sqrt{2}, \sqrt[6]{3}, \sqrt[4]{5}$ (a) $\sqrt[3]{4} > \sqrt[4]{5} > \sqrt{2} > \sqrt[6]{3}$ (b) $\sqrt[3]{4} > \sqrt{2} > \sqrt[6]{3} > \sqrt[4]{5}$ (c) $\sqrt{2} > \sqrt[3]{4} > \sqrt[6]{3} > \sqrt[4]{5}$ (d) $\sqrt[6]{3} > \sqrt[4]{5} > \sqrt[3]{4} > \sqrt{2}$ Q.8 The smallest number among the following $\sqrt[6]{12}, \sqrt[3]{4}, \sqrt[4]{5}, \sqrt{3}$ (a) ∜<u>12</u> (b) $\sqrt[3]{4}$ (c) ∜<u>5</u> (d) $\sqrt{3}$ What is the square root of $\left(\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\right)$? Q.9 (a) $\sqrt{3} + \sqrt{2}$ (b) $\sqrt{3} - \sqrt{2}$ (c) $\sqrt{2} \pm \sqrt{3}$ (d) $\sqrt{2} - \sqrt{3}$ Q.10 If x,y is a rational number and the value of $(5 + \sqrt{11})/(3 - 2\sqrt{11}) =$ X $y\sqrt{11}$ then the value of x and y is ? (a) $x = \frac{-14}{17}, y = \frac{-13}{26}$ (b) $x = \frac{4}{13}, y = \frac{11}{17}$ (c) $x = \frac{-27}{25}, y = \frac{-11}{37}$ (d) $x = \frac{-37}{35}, y = \frac{-13}{35}$ Q.11 If $\sqrt{50} + \sqrt{128} = \sqrt{N}$, then the value of N? (a) 26 (b) 390 (c) 338 (d) 182

Q.12 $\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}}$ equals to ? (a) $\sqrt{2}$ (b) $2\sqrt{2}$ Q.15 If $10^{0.48} = X$, $10^{0.70} = y^2$, then the approximation will be?	$= y \text{ and } X^{z} =$ ate value of z		
(a) $\sqrt{2}$ (b) $2\sqrt{2}$ will be?			
(c) 2 (d) 3 (a) 145 (b)	1 88		
Q.13 If $(4 + \sqrt{7})$ is written as a perfect (c) 2.9 (d)	l) 3.7		
square, it will be equal to which of the Q.16 If 5 ^a = 3125, then the va	If $5^{a} = 3125$, then the value of $5^{(a-3)}$?		
following? (a) 25 (b)) 125		
(a) $(2 + \sqrt{7})^2$ (b) $(\frac{\sqrt{7}}{\sqrt{7}} + \frac{1}{2})^2$ (c) 625 (d)) 1625		
$(a) \left(\frac{1}{2} + \sqrt{7}\right)^{2} (b) \left(\frac{1}{2} + \frac{1}{2}\right)^{2} (c) \left(\sqrt{2} + \sqrt{4}\right)^{2} \qquad \qquad$			
(c) $\{\overline{\sqrt{2}}(\sqrt{7}+1)\}$ (d) $(\sqrt{3}+\sqrt{4})$ (a) 1 (b)) 2		
Q.14 If $\sqrt{7} = 2.6457$ and $\sqrt{3} = 1.732$ (c) 9 (c)) 9 ⁿ		
then the value of $\frac{1}{\sqrt{7}-\sqrt{3}}$? Q.18 If $2^x = 3^y = 6^{-z}$ then	If $2^x = 3^y = 6^{-z}$ then $\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)$		
(a) 1.0944 (b) 1.944 equals to?			
(c) 1.009 (d) 1.0844 (a) 0 (b)) 1		
(c) $\frac{3}{2}$ (d)	$() - \frac{1}{2}$		

Answer Key										
Q.1	(b)		Q.2	(b)		Q.3	(c)	Q.4	(b)	
Q.5	(a)		Q.6	(b)		Q.7	(a)	Q.8	(c)	
Q.9	(a)		Q.10	(d)		Q.11	(c)	Q.12	(c)	
Q.13	(c)		Q.14	(a)		Q.15	(c)	Q.16	(a)	
Q.17	(c)		Q.18	(a)						

Unleash the topper in you