

Council of Scientific & Industrial Research

VOLUME – 2

Fundamental Processes & Cell Communication and Cell Signaling

CSIR-NET : LIFE SCIENCE

S.N.	Content	P.N.
	UNIT – III	
	FUNDAMENTAL PROCESSES	
1.	DNA Replication, Repair and Recombination	1
2.	RNA Synthesis and Processing	22
3.	Protein Synthesis and Processing	51
4.	Control of Gene Expression at Transcription and Translation Level	73
	UNIT – IV	
	CELL COMMUNICATION & CELL SIGNALING	
1.	Host Parasite Interaction	82
2.	Cell Signaling	97
3.	Cellular Communication	120
4.	Cancer	135
5.	Innate and Adaptive Immune System	151

UNIT

Fundamental Processes

DNA Replication - Mechanisms and Enzymes

1. Overview of DNA Replication

DNA replication is a fundamental process that duplicates the genome prior to cell division, ensuring each daughter cell receives an identical copy of the genetic material. It is semi-conservative, highly accurate, and tightly regulated to maintain genome integrity.

• Key Features:

 Semi-Conservative: Each daughter DNA molecule contains one parental and one newly synthesized strand (Meselson-Stahl experiment, 1958).

Table 1: Key Features of DNA Replication

- **Bidirectional**: Replication proceeds in both directions from origins.
- Accurate: Error rate ~10⁻¹⁰ due to proofreading and repair.

Biological Relevance:

- Essential for cell division, growth, and reproduction.
- Errors cause mutations, leading to diseases (e.g., cancer, genetic disorders).

• Applications:

- PCR amplifies DNA based on replication principles.
- Replication inhibitors (e.g., aphidicolin) are anticancer agents.
- Synthetic biology uses replication for genome engineering.

Feature	Description	Biological Role	Example
Semi-	One parental, one new	Ensures genetic	Meselson-Stahl experiment
Conservative	strand	continuity	
Bidirectional	Two forks from each origin	Speeds up replication	E. coli OriC
High Fidelity	Error rate ~10 ⁻¹⁰	Prevents mutations	DNA polymerase
			proofreading
Regulated	Origin firing, checkpoint	Coordinates with cell	CDK regulation
	control	cycle	

2. Unit of Replication

The unit of replication, or **replicon**, is a DNA segment replicated from a single origin, encompassing all necessary cis-acting elements and trans-acting proteins.

2.1 Replicon Structure

• Components:

- **Origin of Replication (Ori)**: Specific DNA sequence where replication initiates.
 - Prokaryotes: Single origin (e.g., E. coli OriC, ~245 bp).
 - Eukaryotes: Multiple origins (~10⁴ in human genome, ~100–1000 kb apart).

- **Replication Fork**: Y-shaped structure where DNA unwinds and replicates.
- **Terminus**: Region where forks converge, halting replication.

• Prokaryotic Replicon:

- Circular chromosome, single OriC.
- Example: E. coli ~4.6 Mb, replicates in ~40 min at 37°C.

• Eukaryotic Replicon:

- Linear chromosomes, multiple origins.
- Example: Human genome (~3.2 Gb) replicates in ~8 h during S phase.

• Extrachromosomal Replicons:

- Plasmids, viral genomes with autonomous origins.
- Example: pBR322 plasmid (~4 kb, ColE1 origin).

2.2 Origin Recognition

- Prokaryotes:
 - OriC: AT-rich, contains DnaA boxes (9 bp, TTATCCACA).
 - DnaA: Binds DnaA boxes, unwinds DNA, recruits helicase (DnaB).
- Eukaryotes:
 - Autonomously Replicating Sequences (ARS): ~100-200 bp, AT-rich.
 - Origin Recognition Complex (ORC): Sixsubunit complex (Orc1–6), binds ARS.
 - Pre-Replication Complex (pre-RC): ORC recruits Cdc6, Cdt1, MCM2–7 helicase.

• Regulation:

- Prokaryotes: DnaA-ATP levels control initiation.
- Eukaryotes: CDK2-Cyclin E, DDK (Cdc7-Dbf4) activate MCM, ensure once-percycle firing.
- Licensing: Pre-RC assembly in G1, prevents re-replication.

2.3 Replication Fork Dynamics

- Structure:
 - Leading strand: Continuous synthesis (5'→3').
 - Lagging strand: Discontinuous synthesis (Okazaki fragments, ~100–200 nt in eukaryotes, ~1–2 kb in prokaryotes).
 - Y-shaped, with single-stranded DNA (ssDNA) exposed.
- Components:
 - Helicase: Unwinds DNA (e.g., DnaB in E. coli, MCM2–7 in eukaryotes).
 - Single-Strand Binding Proteins (SSBs): Stabilize ssDNA (e.g., SSB in E. coli, RPA in eukaryotes).
 - Primase: Synthesizes RNA primers (e.g., DnaG in E. coli, Pol α-primase in eukaryotes).

- DNA Polymerase: Synthesizes DNA (e.g., Pol III in E. coli, Pol δ/ε in eukaryotes).
- Clamp Loader: Loads sliding clamp (e.g., γ-complex in E. coli, RFC in eukaryotes).
- Sliding Clamp: Enhances processivity (e.g., β-clamp in E. coli, PCNA in eukaryotes).

• Fork Movement:

- Rate: ~500–1000 nt/s in E. coli, ~50–100 nt/s in eukaryotes.
- Bidirectional: Two forks per origin, converge at terminus.

2.4 Energetics

- Origin Unwinding:
 - DnaA/MCM ATP hydrolysis: Δ G ≈ -50 kJ/mol per event.
 - Helicase unwinding: ~1−2 ATP per bp, $\Delta G \approx -10 \text{ kJ/mol/bp}.$

• Primer Synthesis:

• Primase: ~10−20 nt/primer, $\Delta G \approx$ -20 kJ/mol per nucleotide.

• DNA Synthesis:

- Polymerase: ~50–100 nt/s, Δ G ≈ -20 kJ/mol per nucleotide.
- Clamp Loading:
 - o RFC/γ-complex: ~2–4 ATP, ΔG ≈ -50 kJ/mol.

Diagram 1: Replication Fork Structure

[Description: A diagram showing a replication fork with leading (continuous) and lagging (Okazaki fragments) strands. Helicase (DnaB/MCM), SSB/RPA, primase (DnaG/Pol α), and polymerase (Pol III/ δ/ϵ) are depicted. The sliding clamp (β -clamp/PCNA) and clamp loader (γ -complex/RFC) are shown. Prokaryotic (OriC, DnaA) and eukaryotic (ARS, ORC) origins are compared. A side panel illustrates fork movement (~1000 nt/s in *E. coli*) and aphidicolin inhibition, with biological roles (e.g., genome duplication).]

3.	Enzymes Involved in DNA Replication	3.2 Eukaryotic Enzymes	
	DNA replication requires a suite of enzymes	Origin Recognition Complex (ORC):	
	working in concert to unwind, prime,	○ Six subunits (Orc1–6), binds AR	
	synthesize, and process DNA.	recruits pre-RC.	
3.1	Prokaryotic Enzymes	Cdc6, Cdt1:	
•	DnaA:	 Load MCM2–7 helicase, license origins. 	
	 Initiator protein, binds OriC DnaA boxes, 	MCM2–7 Helicase:	
	unwinds AT-rich region.	\circ Hexameric, unwinds DNA, activated by	
	 ATP-dependent, recruits DnaB. 	CDK/DDK.	
•	DnaB Helicase:	○ Rate: ~50–100 bp/s.	
	◦ Hexameric, unwinds DNA 5' \rightarrow 3', ~1000	 DNA Polymerase α-Primase: 	
	bp/s.	 Synthesizes RNA-DNA hybrid primers 	
	 Interacts with DnaG primase. 	(~10 nt RNA, ~20 nt DNA).	
٠	DnaG Primase:	• Low processivity, initiates	
	 Synthesizes RNA primers (~10–20 nt) for 	leading/lagging strands.	
	lagging strand.	 DNA Polymerase δ: 	
	 Recruited by DnaB. 	 Main lagging strand polymerase, high 	
•	DNA Polymerase III:	processivity with PCNA.	
	• Main replicative polymerase, high	\circ 3' \rightarrow 5' exonuclease for proofreading.	
	processivity (\sim 500–1000 nt/s).	 DNA Polymerase ε: 	
	• Subunits: α (polymerase), ϵ (3 \rightarrow 5	 Main leading strand polymerase. 	
	exonuclease), p (clamp).	associated with CMG (Cdc45-MCM-	
	o Error rate: 10°, improved by	GINS).	
•	DNA Bolymoraso I:	Replication Protein A (RPA):	
•	• Removes RNA primers fills gaps with	• Binds ssDNA. stabilizes fork. recruits	
	DNA	repair proteins.	
	\circ 5' \rightarrow 3' polymerase. 5' \rightarrow 3' exonuclease	Proliferating Cell Nuclear Antigen (PCNA):	
	(nick translation).	\circ Trimeric sliding clamp, enhances Pol δ/ϵ	
•	DNA Ligase:	processivity (~1000 nt/s).	
	 Seals nicks between Okazaki fragments. 	Replication Factor C (RFC):	
	uses NAD ⁺ (prokaryotes).	\circ Loads PCNA 5 subunits ATP-	
	\circ ΔG ≈ -30 kJ/mol per seal.	dependent.	
•	Single-Strand Binding Protein (SSB):	• Flap Endonuclease 1 (FEN1):	
	• Tetramer, binds ssDNA, prevents	\circ Removes RNA primers, cleaves 5' flaps	
	reannealing/hairpins.	on lagging strand.	
•	Clamp Loader (γ-Complex):	• DNA ligase l'	
	\circ Loads β -clamp, ATP-dependent (5	 Seals nicks uses ATP (eukarvotes) 	
	subunits: γ, δ, δ').	Topoisomerase:	
•	Sliding Clamp (β-Clamp):	• Topoisonerase.	
	• Dimeric ring, encircles DNA, tethers Pol	fork	
	III.	• Tono II: Decatenates daughter strands	
•	Topoisomerase:	ATP-dependent	
	 Type I (TopA): Relieves negative 		
	supercoils, single-strand cuts.	3.3 Enzyme Functions	
	 Type II (Gyrase): Introduces negative 	Unwinding: Helicase separates strands,	
	supercoils, ATP-dependent.	topoisomerase relieves torsion.	

- **Priming**: Primase initiates synthesis, required for polymerase.
- **Synthesis**: Polymerases extend strands, clamps ensure processivity.
- Processing: Pol I/FEN1 remove primers, ligase seals nicks.
- Stabilization: SSB/RPA protect ssDNA, prevent secondary structures.

3.4 Regulation

- Initiation:
 - Prokaryotes: DnaA-ATP levels, SeqA prevents re-initiation.
 - Eukaryotes: CDK/DDK phosphorylate MCM, ORC licensing in G1.
- Fork Progression:
 - Polymerase switching: Pol $\alpha \rightarrow$ Pol δ/ϵ in eukaryotes.
 - Checkpoint kinases (ATR, Chk1) monitor fork stability.
- Termination:
 - Prokaryotes: Tus protein binds Ter sites, halts forks.
 - Eukaryotes: Fork convergence, Topo II decatenation.

Inhibitors:

- **Aphidicolin**: Inhibits Pol $\alpha/\delta/\epsilon$, arrests S phase.
- **Ciprofloxacin**: Inhibits gyrase, blocks prokaryotic replication.
- Camptothecin: Inhibits Topo I, induces DSBs.

3.5 Biological Applications

Genome Duplication:

 Ensures accurate replication for cell division (e.g., ~3.2 Gb in human S phase).

• Biotechnology:

- Polymerases in PCR (e.g., Taq Pol, derived from Thermus aquaticus).
- Plasmid replication in cloning (e.g., pUC19).

• Disease:

- Replication stress in cancer (e.g., BRCA mutations).
- Bloom syndrome: Defective helicase (BLM) causes genome instability.

• Therapeutics:

- Topoisomerase inhibitors (e.g., etoposide) for leukemia.
- DNA polymerase inhibitors (e.g., cytarabine) for AML.

Diagram 2: Prokaryotic vs. Eukaryotic Replication

[Description: A diagram comparing prokaryotic (*E. coli*: OriC, DnaA, DnaB, Pol III, β -clamp) and eukaryotic (ARS, ORC, MCM, Pol δ/ϵ , PCNA) replication. Enzymes (helicase, primase, polymerase, ligase) and their roles (unwinding, priming, synthesis, sealing) are shown. Fork rates (~1000 nt/s vs. ~50 nt/s) and origin numbers (1 vs. ~10⁴) are highlighted. A side panel shows aphidicolin and ciprofloxacin effects, with biological roles (e.g., PCR).]

Table 3: Replication Enzymes

Enzyme	Prokaryotic Example	Eukaryotic Example	Function
Initiator	DnaA	ORC, Cdc6, Cdt1	Origin recognition
Helicase	DnaB	MCM2–7	DNA unwinding
Primase	DnaG	Pol α-primase	RNA primer synthesis

Enzyme	Prokaryotic Example	Eukaryotic Example	Function
Polymerase	Pol III, Pol I	Pol δ, Pol ε, Pol α	DNA synthesis
SSB	SSB	RPA	ssDNA stabilization
Clamp	β-Clamp	PCNA	Processivity
Clamp Loader	γ-Complex	RFC	Clamp loading
Ligase	DNA Ligase (NAD ⁺)	DNA Ligase I (ATP)	Nick sealing
Topoisomerase	Gyrase, TopA	Торо I, Торо II	Supercoil relief

PYQ Analysis

Below are 20 PYQs from CSIR NET Life Sciences (2018–2024) related to DNA replication mechanisms and enzymes, with solutions and explanations.

(2018)

- 1. What is the mode of DNA replication?
 - (A) Conservative
 - (B) Semi-conservative
 - (C) Dispersive
 - (D) Random.

Solution: Semi-conservative (Meselson-Stahl).

Answer: B.

Tip: Semi-conservative = one old, one new strand.

2. Which enzyme unwinds DNA in E. coli?

(A) DnaA, (B) DnaB

(C) DnaG (D) Pol III.

Solution: DnaB helicase unwinds DNA.

Answer: B.

Tip: DnaB = helicase.

(2019)

- 3. What is the replication fork rate in E. coli?(A) 10 nt/s(B) 100 nt/s
 - (C) 1000 nt/s (D) 10,000 nt/s.

Solution: ~500–1000 nt/s.

Answer: C.

Tip: E. coli = 1000 nt/s.

- 4. Which protein binds ssDNA in eukaryotes?
 - (A) SSB (B) RPA
 - (C) PCNA (D) ORC.

Solution: RPA stabilizes ssDNA.

Answer: B.

Tip: RPA = eukaryotic SSB.

(2020)

5. What initiates replication in E. coli?
(A) DnaB
(B) DnaA
(C) DnaG
(D) Pol I.

Solution: DnaA binds OriC.

Answer: B.

Tip: DnaA = initiator.

- 6. Which enzyme seals nicks in DNA?(A) Helicase (B) Primase
 - (C) Ligase (D) Topoisomerase.

Solution: DNA ligase seals nicks.

Answer: C.

Tip: Ligase = sealing.

(2021)

- 7. What is the prokaryotic sliding clamp?
 - (A) β -Clamp (B) PCNA
 - (C) RPA (D) γ-Complex.

Solution: β-Clamp enhances Pol III processivity. **Answer: A**.

- **Tip**: β -Clamp = prokaryotic.
- 8. Which inhibitor blocks DNA polymerase? (A) Rifampicin (B) Aphidicolin

(C) Tetracycline (D) Streptomycin.

Solution: Aphidicolin inhibits Pol $\alpha/\delta/\epsilon$.

Answer: B.

Tip: Aphidicolin = polymerase.

(2022)

- 9. What synthesizes RNA primers in eukaryotes?
 (A) Pol δ
 (B) Pol ε
 - (C) Pol α-primase (D) MCM.

Solution: Pol α -primase synthesizes primers.

Answer: C.

Tip: Pol α = primase.

10. How many origins are in the human genome?

(A) 1 (B) 10²

(C) 10^4 (D) 10^6 . Solution: ~10⁴ origins.

Answer: C.

Tip: Eukaryotes = multiple origins.

(2023)					
11. What removes F	11. What removes RNA primers in E. coli?				
(A) Pol III	(B) Pol I				
(C) DnaG	(D) Ligase.				
Solution: Pol I r	emoves primers via nick				
translation.					
Answer: B.					
Tip: Pol I = primer re	emoval.				
12. Which protein lo	oads PCNA in eukaryotes?				
(A) ORC	(B) RFC				
(C) MCM	(D) RPA.				
Solution: RFC loads	PCNA.				
Answer: B.					
Tip: RFC = clamp loa	ader.				
(2024)					
13. What is the error	or rate of DNA Pol III without				
proofreading?					
(A) 10 ⁻²	(B) 10 ⁻⁵				
(C) 10 ⁻⁸	(D) 10 ⁻¹⁰ .				
Solution: ~10 ⁻⁵ with	nout proofreading.				
Answer: B.					
Tip : Pol III = 10 ⁻⁵ .					
14. Which enzyme	relieves DNA supercoils in E.				
coli?	0 0 -				
(A) DnaB	(B) Gyrase				
(C) DnaG	(D) Pol I.				
Solution: Gyrase (To	opo II) relieves supercoils.				
Answer: B.	l l'Uniea				
Tip: Gyrase = super	coil relief.				
(2023):					
15. What recogniz	es eukarvotic replication				
origins?					
(A) DnaA	(B) ORC				
(C) SSB	(D) PCNA.				
Solution: ORC binds ARS					
Answer: B.					
Tip : ORC = eukarvot	ic origin.				
(2022).	5				
(ZUZZ).	wathorized discontinuously?				
(A) Loading	(P) Lagging				
(A) Leduing (D) Lagging					
(C) DULLI (D) NetHer.					
solution: Lagging Strand Torms Okazaki					
Ancwor: P	Answer: B				
Tin: agging - discontinuous					
IIP : Lagging = discontinuous.					

(2021) **17.** What is the role of the β -clamp? (A) Unwinding (B) Priming (C) Processivity (D) Sealing. **Solution**: β-Clamp enhances Pol III processivity. Answer: C. **Tip**: β -Clamp = processivity. (2020)18. Which inhibitor targets gyrase? (A) Aphidicolin (B) Ciprofloxacin (C) Camptothecin (D) Etoposide. Solution: Ciprofloxacin inhibits gyrase. Answer: B. **Tip**: Ciprofloxacin = gyrase. (2019) 19. What is the size of Okazaki fragments in E. coli? (A) 10–20 nt (B) 100-200 nt (C) 1–2 kb (D) 10 kb. Solution: ~1–2 kb in E. coli. Answer: C. **Tip**: E. coli Okazaki = 1-2 kb. (2018) **20.** Which disease is linked to defective helicase? (A) PKU (B) Bloom syndrome (C) Gout (D) Diabetes. Solution: Bloom syndrome (BLM helicase). Answer: B. Tip: Bloom = helicase defect. **Exam Tips** 1. Memorize Key Facts: • Replicon: Origin (OriC/ARS), fork, terminus. • Prokaryotic Enzymes: DnaA (initiator), DnaB (helicase), Pol III (main), β-clamp (processivity). Eukaryotic Enzymes: ORC (origin), MCM (helicase), Pol δ/ϵ (main), PCNA (clamp). Rates: E. coli ~1000 nt/s, eukaryotes ~50 nt/s. • Inhibitors: Aphidicolin (Pol), ciprofloxacin (gyrase), camptothecin (Topo I).

2. Master Numericals:

- Calculate fork movement (e.g., 1000 nt/s × 40 min for E. coli).
- Estimate error rates (e.g., 10^{-5} without proofreading).
- Compute replicon sizes (e.g., human genome \div 10⁴ origins).

3. Eliminate Incorrect Options:

- For enzyme questions, rule out nonreplication proteins (e.g., RNA pol ≠ DNA pol).
- For fork questions, focus on lagging strand (discontinuous).

4. Avoid Pitfalls:

- Don't confuse DnaA (initiator) vs. DnaB (helicase).
- Don't mix up Pol III (replication) vs. Pol I (primer removal).
- Distinguish prokaryotic (single OriC) vs. eukaryotic (multiple ARS).

5. Time Management:

- Allocate 1–2 minutes for Part B questions (e.g., enzyme function).
- Spend 3–4 minutes on Part C questions (e.g., fork rate calculations).
- Practice sketching replication forks and origin structures.

DNA Replication - Fidelity and Extrachromosomal Replicons

1. Overview of DNA Replication Fidelity and Extrachromosomal Replicons

DNA replication fidelity and extrachromosomal replicons are critical for maintaining genome integrity and enabling genetic manipulation in biotechnology.

• Replication Fidelity:

- \circ Ensures accurate DNA duplication, with an error rate of ~10⁻¹⁰ per nucleotide.
- Achieved through polymerase selectivity, proofreading, and postreplication repair.
- Critical for preventing mutations that cause diseases (e.g., cancer).

• Extrachromosomal Replicons:

- Autonomous DNA molecules (e.g., plasmids, viral genomes) with independent replication origins.
- Replicate outside chromosomal DNA, often in multiple copies.
- Essential in biotechnology (e.g., cloning vectors) and pathogenesis (e.g., viral infections).

Biological Relevance:

- Fidelity prevents hereditary disorders and tumor formation.
- Extrachromosomal replicons drive antibiotic resistance and viral propagation.

Applications:

- High-fidelity polymerases in PCR (e.g., Pfu).
- Plasmids in gene therapy (e.g., AAV vectors).
- Viral replication inhibitors as antivirals (e.g., acyclovir).

Table 1: Overview of Replication Fidelity and Extrachromosomal Replicons

Component	Definition	Key Feature	Biological Role	Example
Replication Fidelity	Accuracy of DNA	Error rate ~10 ⁻¹⁰	Mutation	Pol III
	synthesis		prevention	proofreading
Proofreading	3'→5' exonuclease	Corrects	Enhances	Pol ε
	activity	misincorporations	accuracy	exonuclease
Mismatch Repair	Post-replication	Removes	Reduces	MutS/MutL in
	error correction	mismatches	mutations	E. coli
Extrachromosomal	Autonomous DNA	Independent origins	Biotech,	pBR322, AAV
Replicons	molecules		pathogenesis	

2. Replication Fidelity: Mechanisms Ensuring Accuracy

Replication fidelity is achieved through multiple layers of error prevention and correction, including polymerase selectivity, proofreading, and mismatch repair.

2.1 Polymerase Selectivity

• Mechanism:

- DNA polymerases (e.g., Pol III in E. coli, Pol δ/ε in eukaryotes) select correct dNTPs based on base-pairing (A-T, G-C).
- Active site geometry ensures Watson-Crick pairing.

• Accuracy:

- Error rate: ~10⁻⁴ to 10⁻⁵ per nucleotide (without proofreading).
- Example: Pol III rejects dCTP opposite adenine due to steric clash.

• Factors:

- **Hydrogen Bonding**: 2–3 H-bonds per base pair (A-T: 2, G-C: 3).
- **Base Stacking**: Hydrophobic interactions stabilize correct pairs.
- dNTP Concentration: High [dNTP] reduces errors.

• Energetics:

- Correct dNTP binding: ΔG ≈ -20 kJ/mol.
- O Incorrect binding: ΔG ≈ -10 kJ/mol, destabilized.

2.2 Proofreading (3'→5' Exonuclease Activity)

• Mechanism:

- Polymerases have a 3'→5' exonuclease domain that removes misincorporated nucleotides.
- \circ Example: Pol III ε-subunit, Pol δ/ε in eukaryotes.
- Process: If incorrect dNTP is added, polymerase pauses, transfers 3' end to exonuclease site, excises mismatch.

• Accuracy:

- Improves error rate to ~10⁻⁷ (10²-fold increase).
- Example: Removes dCTP opposite adenine, replaces with dTTP.

• Regulation:

- Proofreading active during replication stress (e.g., low dNTPs).
- Inhibited in translesion synthesis (e.g., Pol IV, Pol V).

• Energetics:

- Exonuclease cleavage: $\Delta G \approx -20$ kJ/mol per nucleotide.
- dNTP reincorporation: Δ G ≈ -20 kJ/mol.

2.3 Mismatch Repair (MMR)

- Mechanism:
 - Post-replication system corrects basepair mismatches and small insertion/deletion loops (IDLs).
 - Prokaryotes:
 - MutS: Binds mismatches (e.g., G-T, A-C).
 - MutL: Recruits MutH, activates endonuclease.
 - MutH: Nicks unmethylated strand at GATC (methyl-directed).
 - UvrD: Helicase unwinds DNA.
 - **Exonucleases**: Exol, ExoVII remove mismatched strand.
 - Pol III, Ligase: Resynthesize, seal DNA.
 - Eukaryotes:
 - MSH2-MSH6 (MutSα): Binds mismatches.
 - MLH1-PMS2 (MutLα): Activates excision.
 - **EXO1**: Removes mismatched strand.
 - Pol δ, Ligase I: Resynthesize, seal.
 - Strand discrimination: PCNA, RFC (no methylation in eukaryotes).

• Accuracy:

- $\circ~$ Improves error rate to $^{\sim}10^{-10}$ (10³-fold increase).
- Example: Corrects G-T to G-C postreplication.
- Efficiency:
 - Repairs ~99% of mismatches within minutes.
 - Processes ~1–10 nt loops (IDLs).

Regulation:

- Prokaryotes: Dam methylation (GATC) marks parental strand.
- Eukaryotes: Nick-directed repair, PCNA polarity.
- Upregulated by replication stress (e.g., ATR signaling).

• Energetics:

- MutS binding: ΔG ≈ -20 kJ/mol per mismatch.
- Excision: ATP-dependent, $\Delta G \approx -50$ kJ/mol.
- Resynthesis: Pol δ, ΔG ≈ -20 kJ/mol per nucleotide.

2.4 Replication Stress and Error Handling

Replication Stress:

- Causes: dNTP depletion, DNA damage, secondary structures.
- Response: ATR-Chk1 checkpoint stalls forks, recruits repair proteins.
- Example: Stalled forks at hairpins resolved by Pol η.

• Translesion Synthesis (TLS):

- Low-fidelity polymerases (e.g., Pol IV, Pol V in E. coli; Pol η, Pol κ in eukaryotes).
- Bypasses lesions (e.g., UV-induced thymine dimers).
- Error rate: ~10⁻² to 10⁻³, increases mutations.

• Fork Restart:

- RecA (prokaryotes), BRCA2 (eukaryotes) stabilize forks.
- Homologous recombination repairs collapsed forks.

2.5 Biological Applications

Mutation Prevention:

 MMR defects cause microsatellite instability (MSI) in cancer (e.g., Lynch syndrome).

Table 2: Replication Fidelity Mechanisms

• Genomics:

- High-fidelity replication ensures accurate sequencing (e.g., NGS).
- Disease:
 - MMR mutations in colorectal cancer (MSH2, MLH1).
 - TLS dysregulation in xeroderma pigmentosum (Pol η defects).

• Therapeutics:

- MMR inhibitors (e.g., MLH1 silencers) sensitize tumors to chemotherapy.
- TLS inhibitors (e.g., Pol η inhibitors) for UV-induced cancers.

Diagram 1: Replication Fidelity Mechanisms [Description: A diagram showing replication fidelity layers: polymerase selectivity (Pol III/ δ active site, G-C pairing), proofreading (3' \rightarrow 5' exonuclease, ϵ -subunit), and MMR (MutS/MutL/MutH in *E. coli*, MSH2/MLH1 in eukaryotes). Mismatch correction (G-T \rightarrow G-C) and IDL repair are depicted. A side panel illustrates TLS (Pol η bypassing thymine dimer) and MSI in cancer, with biological roles (e.g., mutation prevention).]

Mechanism	Key Proteins	Error Rate Improvement	Example
Selectivity	Pol III, Pol δ/ε	~10 ⁻⁴ to 10 ⁻⁵	Correct dNTP pairing
Proofreading	Pol III ε, Pol δ/ε exonuclease	~10 ⁻⁷ (10 ² -fold)	Removes G-T mismatch
Mismatch	MutS/MutL (prok),	~10 ⁻¹⁰ (10 ³ -fold)	Corrects A-C mismatch
Repair	MSH2/MLH1 (euk)		
TLS	Pol IV/V, Pol η	$\sim 10^{-2}$ to 10^{-3} (error-prone)	Bypasses thymine
			dimer

3. Extrachromosomal Replicons	3.2 Viral Genomes
Extrachromosomal replicons are	• Types:
autonomous DNA molecules that replicate	 DNA Viruses:
independently of chromosomal DNA,	 Double-stranded (e.g., SV40,
including plasmids and viral genomes.	herpesviruses).
3.1 Plasmids	 Single-stranded (e.g., parvoviruses).
Definition	 Replication: Host machinery (e.g.,
Circular double-stranded DNA	Pol δ in SV40) or viral polymerases
molecules ~1-200 kb	(e.g., HSV Pol).
\sim Contain origins (o.g. ColE1 in E. coli)	 RNA Viruses:
gonos (o g. antibiotic resistance)	 Replicate via RNA-dependent RNA
genes (e.g., antibiotic resistance).	polymerase (RdRp).
Replication Mechanisms: Thete Deplication:	 Example: SARS-CoV-2, positive-sense
• Ineta Replication:	ssRNA.
 Bidirectional, resembles 	 Retroviruses:
chromosomal replication.	• Reverse transcription (RNA \rightarrow DNA)
Example: pBR322 (~4 kb, ColE1	by reverse transcriptase.
origin).	 Example: HIV, integrates into host
 Process: RNA primer (RNA II), Pol III, 	genome.
DnaG primase.	Replication Mechanisms:
 Rolling Circle Replication: 	 SV40 (DNA Virus):
 Unidirectional, used by small 	 T-antigen (viral helicase) binds
plasmids (e.g., pSC101).	origin, recruits host Pol α/δ.
 Process: Nicking by Rep protein, 	 Bidirectional, theta-like replication.
leading strand synthesis, lagging	 Parvovirus (ssDNA):
strand later.	 Hairpin ends serve as primers, rolling
 Strand Displacement: 	hairpin replication.
 Used by some plasmids (e.g., R6K). 	O HIV (Retrovirus):
 Process: Single-strand displacement, 	Reverse transcriptase synthesizes
continuous synthesis.	dsDNA from RNA.
Copy Number Control:	Integrase inserts DNA into host
• High Copy : ~10–100/cell (e.g., pUC19,	genome.
relaxed control).	Regulation: (inclusion (inclusion field))
 Low Copy: ~1–2/cell (e.g., F plasmid. 	• viral proteins (e.g., 1-antigen, E1 in HPV)
stringent control).	control initiation.
• Regulation : Antisense RNA (e.g., CopA	o nosi checkpoints bypassed (e.g., p53
in R1 plasmid), iterons (e.g., RepA in	
pSC101).	• Energetics:
Partitioning:	dependent
\sim ParA/ParB systems segregate low-conv	\sim HIV reverse transcription: $\sim 10^3$ kU/mol
nlasmids (e.g. E.nlasmid)	BT dependent
→ Example: DarM forms actin_like	3 3 Stability and Maintonance
filaments in P1 plasmid	Dissmide:
Enorgotics:	 Flashinus. Addiction Systems: Toxin-antitoxin (a.g.)
 Ellergeuls. Thata rankastions x104 kt/sloomid Data 	CcdB/CcdA in E plasmid) ensures
• Theta replication: "10" KJ/plasmid, POI	retention
III-dependent.	∩ Multimer Resolution: Site-specific
o kolling circle: "10" kJ/plasmid, Rep	recombination (e.g. Cer/Yer in ColE1)
protein ATP hydrolysis.	

IV

UNIT

Cell communication and cell signaling

Host-Parasite Interaction - Bacterial and Viral Entry

1. Overview of Host-Parasite Interaction -Bacterial and Viral Entry

Host-parasite interactions involve complex molecular dialogues that enable pathogens to recognize, bind, and enter host cells, initiating infection.

Bacterial Entry:

- Bacteria use adhesins, pili, and secreted effectors to bind and invade animal or plant cells.
- Entry mechanisms include phagocytosis, injection, and breach of cellular barriers.

• Viral Entry:

- Viruses bind host receptors via envelope or capsid proteins, entering via fusion, endocytosis, or direct penetration.
- Specificity depends on receptor-ligand interactions and host cell type.

Table 1: Key Features of Bacterial and Viral Entry Topology

Host Cells:

- **Animal Cells**: Epithelial, immune, and endothelial cells; targeted by diverse pathogens (e.g., Salmonella, HIV).
- Plant Cells: Guarded by cell walls, targeted by specialized bacteria (e.g., Agrobacterium) and viruses (e.g., TMV).
- Biological Relevance:
 - Entry determines pathogen tropism, infectivity, and disease progression.
 - Host defenses (e.g., immune recognition, cell wall resistance) counter entry.

• Applications:

- Antibiotics and antivirals target entry (e.g., enfuvirtide for HIV).
- Vaccines mimic pathogen entry proteins (e.g., SARS-CoV-2 spike).
- Biocontrol uses entry-disrupting agents in plants (e.g., RNAi against viruses).

Table 1. Key reactives of Bacterial and Viral Litting				
Feature	Bacterial Entry	Viral Entry	Biological Role	Example
Recognition	Adhesins, pili	Envelope/capsid	Host cell	E. coli FimH, HIV
		proteins	targeting	gp120
Entry Mechanism	Phagocytosis,	Fusion,	Cell invasion	Salmonella T3SS, HIV
	injection	endocytosis		fusion
Host Receptor	Integrins, sugars	ACE2, CD4	Specific binding	Plant lectins, animal
				integrins
Cellular Target	Epithelial, immune	Diverse cell types	Pathogen	TMV in plants,
	cells		tropism	influenza in animals

2. Bacterial Entry into Host Cells

Bacteria employ diverse strategies to recognize and enter animal and plant host cells, overcoming physical and immune barriers.

2.1 Recognition in Animal Cells

• Adhesins:

• Surface proteins that bind host receptors (e.g., integrins, cadherins).

• Examples:

- Escherichia coli: FimH (type 1 pili) binds mannose on epithelial cells.
- Staphylococcus aureus: Fibronectinbinding proteins (FnBPs) bind integrins.
- \circ **Specificity**: High-affinity interactions, K_d ~10^{-8} to 10⁻¹⁰ M.

• Pili/Fimbriae:	Energetics:
 Filamentous structures for attachment. 	◦ Actin remodeling: ATP-dependent, Δ G ≈
Example: Pseudomonas aeruginosa	-50 kJ/mol per event.
type IV pili bind asialo-GM1 on lung	\circ T3SS injection: ~10 ³ ATP/effector, ΔG ≈ -
epithelia.	50 kJ/mol.
Regulation:	2.3 Recognition in Plant Cells
 Quorum sensing upregulates adhesin 	Adhesins:
expression (e.g., Vibrio cholerae Tcp	• Bind cell wall components (e.g.,
pili).	cellulose, pectin).
 Host signals (e.g., pH, oxygen) modulate 	 Example: Agrobacterium
pili assembly.	tumefaciens VirB pili bind
Energetics:	acetosyringone-induced receptors.
\circ Adhesin-receptor binding: ΔG ≈ -30 to -	• Specificity: Phenolic compounds (e.g.,
50 kJ/mol.	lignin) trigger adhesion.
◦ Pili assembly: ATP-dependent, ΔG ≈ -50	Regulation:
kJ/mol per subunit.	 Plant signals: Wounding, phenolics
2.2 Entry Mechanisms in Animal Cells	induce vir genes.
Phagocytosis:	• Ouorum sensing: Autoinducers (e.g.,
 Zipper Mechanism: 	AHLS) upregulate adhesins.
 Bacteria (e.g., Listeria 	• Energetics : Adhesin binding $\Lambda G \approx -20$ to -40
monocytogenes) bind integrins,	kl/mol
trigger actin remodeling.	2 4 Entry Mechanisms in Plant Cells
 InIA binds E-cadherin, induces 	T DNA Transfor:
engulfment.	Agrobactorium: Transfors T-DNA via VirB
• Trigger Mechanism:	TASS into plant puclous
 Bacteria (e.g., Salmonella enterica) 	VirD2 picks T DNA VirE2 costs DNA
inject effectors via type III secretion	- VIIDZ IIICKS I-DINA, VIIEZ COALS DINA,
system (T3SS).	
 SipA/SipC induce membrane ruffling, 	gail). $\sim 10^2 10^3$ T DNA
engulf bacteria.	integrations (plant coll
\circ Efficiency: ~10 ² –10 ³ bacteria	
internalized/hour in macrophages.	Cell Wall Breach: Secretes cellulases
Injection:	o Adminorialis. Secretes cellulases,
 T3SS delivers effectors into cytoplasm 	pectiliases via 1255, degrades celi wali.
(e.g., Yersinia pestis Yops inhibit	T2SS to inject offectors (e.g. AurDte)
phagocytosis).	1355 to inject effectors (e.g., AVIPto),
• Example: Shigella flexneri IpaB/C disrupt	suppresses derense.
actin, enable invasion.	• Regulation:
Direct Penetration:	• Effector specificity: Avr genes match
 Bare used by Mycobacterium tuberculosis 	plant R genes (gene-for-gene
to breach alveolar enithelia	resistance).
Bogulation:	 Host defenses: Callose deposition, HR
- Regulation.	(hypersensitive response).
tomporature pH /o.g. 27°C for	Energetics:
cemperature, p⊢ (e.g., 37 C for	◦ T4SS transfer: ATP-dependent, Δ G ≈ -50
Saimoneila).	kJ/mol per T-DNA.

Host immune evasion: Yops block NF-κB signaling.

◦ Cellulase secretion: $\Delta G \approx -20$ kJ/mol per enzyme.

2.5 Biological Applications

• Infection:

- Salmonella invades gut epithelia, causes gastroenteritis.
- Agrobacterium transforms plant cells, induces tumors.
- Disease:
 - Yersinia (plague) evades phagocytosis, systemic spread.
 - Xanthomonas causes citrus canker, crop loss.

Diagram 1: Bacterial Entry Mechanisms

 Table 2: Bacterial Entry Mechanisms

[Description: A diagram showing bacterial entry into animal (zipper: *Listeria* InIA, trigger: *Salmonella* T3SS) and plant (*Agrobacterium* T4SS, *Xanthomonas* T2SS) cells. Adhesins (FimH, VirB), receptors (integrins, pectin), and effectors (SipA, AvrPto) are depicted. Host defenses (phagocytosis, callose) and inhibitors (T3SS blockers) are shown. A side panel illustrates GM crop transformation and vaccine adhesins, with biological roles (e.g., pathogenesis).]

Mechanism	Example	Key Factors	Host Cell Type		
Zipper	Listeria InlA	Integrins, actin	Animal epithelial		
Trigger	Salmonella SipA/C	T3SS, membrane ruffling	Animal macrophage		
T-DNA Transfer	Agrobacterium VirB/D2	T4SS, acetosyringone	Plant parenchyma		
Cell Wall Breach	Xanthomonas cellulases	T2SS, pectinases	Plant mesophyll		

3. Viral Entry into Host Cells

Viruses use specific receptor interactions and entry mechanisms to invade animal and plant cells, initiating replication.

3.1 Recognition in Animal Cells

• Receptors:

- Enveloped Viruses:
 - HIV: gp120 binds CD4, CCR5/CXCR4 co-receptors on T-cells.

- Therapeutics:
 - T3SS inhibitors (e.g., salicylidene acylhydrazides) for Salmonella.
 - RNAi against Agrobacterium Vir genes in plants.
- Biotechnology:
 - Agrobacterium-mediated plant transformation (e.g., GM crops).
 - Bacterial adhesins in vaccine design.

Poliovirus: PVR (CD155) on neuronal cells.

Influenza: Hemagglutinin (HA) binds

- Adenovirus: CAR (coxsackieadenovirus receptor), integrins.
- Specificity: K_d ~10⁻⁹ to 10^{-11} M, high affinity.

- Receptor density: High CD4 on T-cells enhances HIV tropism.
- Host signals: Cytokines upregulate CCR5 (e.g., IL-2 in HIV).
- Energetics:
 - gp120-CD4 binding: Δ G ≈ -40 kJ/mol.
 - HA-sialic acid: $\Delta G \approx -20$ kJ/mol.

3.2 Entry Mechanisms in Animal Cells

- Membrane Fusion:
 - Enveloped Viruses:
 - HIV: gp41 mediates fusion with plasma/endosomal membrane, triggered by CD4/CCR5.
 - Influenza: HA undergoes pHdependent conformational change in endosomes, fuses membrane.
 - Efficiency: ~10³–10⁴ virions enter/hour in T-cells (HIV).
- Endocytosis:
 - Clathrin-Mediated:
 - Adenovirus: CAR binding, clathrincoated pits, endosomal escape via penton base.
 - Caveolae-Mediated:
 - SV40: Binds MHC-I, enters via caveolin vesicles.
 - Macropinocytosis:
 - Vaccinia virus: Induces actin-driven membrane blebs.
 - Efficiency: ~10²-10³ virions internalized/hour in epithelial cells.
- Direct Penetration:
 - Rare, used by some non-enveloped viruses (e.g., poliovirus injects RNA).
- Regulation:
 - pH: Low endosomal pH (e.g., pH 5.5) triggers HA fusion.
 - Proteases: Cleave HA (influenza) or gp120 (HIV) for activation.
- Energetics:
 - Fusion: ΔG ≈ -50 kJ/mol (gp41 conformational change).
 - Endocytosis: ATP-dependent, $\Delta G \approx -50$ kJ/mol per vesicle.

3.3 Recognition in Plant Cells

• Receptors:

- Cell Wall: Viruses exploit plasmodesmata, wounds, or vectormediated entry.
 - Example: Tobacco mosaic virus (TMV) binds cell wall proteins (e.g., pectin methylesterase).
- Vector-Dependent:
 - Aphids transmit potyviruses, bind viral coat proteins (e.g., HC-Pro).
- **Specificity**: Limited by cell wall, vector compatibility.

Regulation:

- Plant defenses: RNAi, R genes block receptor interactions.
- Environmental cues: Temperature, humidity affect vector transmission.
- Energetics: Binding, ΔG ≈ -20 kJ/mol (TMVpectin).

3.4 Entry Mechanisms in Plant Cells

- Plasmodesmata:
 - Mechanism: Movement proteins (MPs) enlarge plasmodesmata, allow viral RNA passage.
 - Example: TMV MP binds RNA, targets plasmodesmata, spreads cell-to-cell.
 - Efficiency: ~10–100 cells infected/day in tobacco.
- Vector-Mediated:
 - **Insects**: Aphids inject potyvirus virions into phloem.
 - Example: Potato virus Y (PVY) HC-Pro enhances aphid transmission.
 - Fungi/Nematodes: Deliver viruses via wounds (e.g., soil-borne wheat mosaic virus).

• Direct Penetration:

- Mechanical wounds allow entry (e.g., TMV via leaf abrasion).
- Regulation:
 - RNAi: Silences viral RNAs, restricts movement.
 - Salicylic acid: Induces defense genes, closes plasmodesmata.

• Energetics:

- MP-plasmodesmata interaction: Δ G ≈ 20 kJ/mol.
- Vector injection: $\Delta G \approx -10 \text{ kJ/mol per virion.}$

3.5 Biological Applications

• Infection:

- HIV infects T-cells, causes AIDS.
- TMV spreads in tobacco, reduces crop yield.
- Disease:
 - Influenza causes respiratory illness via sialic acid entry.
 - PVY leads to potato tuber necrosis.
- Therapeutics:
 - **Enfuvirtide**: HIV gp41 fusion inhibitor.
 - **Oseltamivir**: Inhibits influenza neuraminidase, blocks release.

• Biotechnology:

- Plant viral vectors for gene delivery (e.g., TMV-based expression).
- Antiviral RNAi in GM crops.

Table 3: Viral Entry Mechanisms

Viral Entry Mechanisms

Diagram 2: Viral Entry Mechanisms

[Description: A diagram showing viral entry into animal (HIV: gp120-CD4 fusion, influenza: HAendosomal fusion, adenovirus: clathrin) and plant (TMV: MP-plasmodesmata, PVY: aphid vector) cells. Receptors (CD4, sialic acid, pectin) and viral proteins (gp41, HC-Pro) are depicted. Host defenses (RNAi, IFN) and inhibitors (enfuvirtide) are shown. A side panel illustrates TMV vectors and oseltamivir, with biological roles (e.g., viral spread).]

· · · ·			
Mechanism	Example	Key Factors	Host Cell Type
Membrane Fusion	HIV gp41	CD4, CCR5, low pH	Animal T-cells
Endocytosis	Adenovirus	CAR, clathrin, caveolin	Animal epithelial
Plasmodesmata	TMV MP	Cell wall, pectin	Plant mesophyll
Vector-Mediated	PVY HC-Pro	Aphids, phloem	Plant phloem

PYQ Analysis

Below are 20 PYQs from CSIR NET Life Sciences (2018–2024) related to bacterial and viral entry, with solutions and explanations.

(2018):

1.	What	mediates	Ε.	coli	attachment	to
	epithe	lial cells?				
	(A) Fim	۱H		(E	3) SipA	
	(C) InlA		(D) YopH			
So	lution: I	FimH (type :	1 pil	i).		

Answer: A.

Tip: FimH = E. coli adhesion.

Which receptor does HIV bind for entry?
(A) Sialic acid
(B) CD4
(C) CAR
(D) PVR

Solution: CD4 with CCR5/CXCR4.

Answer: B.

Tip: HIV = CD4.

(2019):

3. What injects effectors in Salmonella entry?(A) T1SS(B) T3SS

(C) T4SS (D) T2SS

Solution: Type III secretion system.

Answer: B.

Tip: T3SS = Salmonella.

4. Which virus uses clathrin-mediated endocytosis?
(A) HIV
(B) Influenza
(C) Adenovirus
(D) TMV

Solution: Adenovirus (CAR).

Answer: C.

Tip: Adenovirus = clathrin.

(2020) :		Question (2023):			
5. What facilitat	es Agrobacterium T-DNA.	11. What degrades plant cell wa	lls for		
transfer?		Xanthomonas entry?			
(A) T1SS	(B) T2SS	(A) Cellulases (B) Adhesir	าร		
(C) T3SS	(D) T4SS	(C) T3SS (D) T4SS			
Solution: Type IV s	ecretion system.	Solution: Cellulases via T2SS.			
Answer: D.		Answer: A.			
Tip : T4SS = Agrobacterium.		Tip : Cellulases = Xanthomonas.			
6. Which influenza	a protein binds sialic acid?	12. Which inhibitor targets influenza ent	ry?		
(A) HA	(B) NA	(A) Enfuvirtide (B) Oseltan	nivir		
(C) M2	(D) NS1	(C) Acyclovir (D) Ribaviri	in		
Solution: Hemagglutinin (HA).		Solution: Oseltamivir (neuraminidase).			
Answer: A.		Answer: B.			
Tip: HA = sialic acid		Tip : Oseltamivir = influenza.			
(2021):		(2024):			
7. What blocks H	V entry?	13. What induces Salmonella me	mbrane		
(A) Oseltamivir	(B) Enfuvirtide	ruffling?			
(C) Ribavirin	(D) Acyclovir	(A) FimH (B) SipA/C			
Solution: Enfuvirtio	le (gp41 inhibitor).	(C) InIA (D) YopH			
Answer: B.		Solution: SipA/C (T3SS effectors).			
Tip : Enfuvirtide = H	IV fusion.	Answer: B.			
8. Which virus	uses plasmodesmata for	Tip : SipA/C = ruffling.			
spread?	Platan	14. Which virus enters via caveolae?			
(A) HIV	(B) Influenza	(A) HIV (B) SV40			
(C) TMV	(D) Adenovirus	(C) Influenza (D) TMV			
Solution: Tobacco mosaic virus.		Solution: SV40 (MHC-I).			
Answer: C.		Answer: B.			
Tip : TMV = plasmodesmata.		Tip : SV40 = caveolae.			
(2022):		(2023):			
9. What mediates	Listeria entry into epithelial	15. What transfers T-DNA in Agrobacterium?			
cells?		(A) VirB (B) FimH			
(A) FimH	(B) InIA	(C) SipA (D) InlA			
(C) SipA	(D) VirB	Solution: VirB (T4SS).			
Solution: InIA (F-cadherin)		Answer: A.			
Answer: B.		Tip : VirB = T-DNA.			
Tip: InIA = Listeria.		(2022):			
10. Which receptor does poliovirus bind?		16. Which receptor does SARS-CoV-2 hind?			
(A) CD4	(B) PVR	(A) CD4 (B) ACE2			
(C) CAR	(D) Sialic acid	(C) PVR (D) CAR			
Solution: PVR (CD155).		Solution: ACE2 (spike protein).			
Answer: B.		Answer: B.			
Tip: Poliovirus = PVR.		Tip: SARS-CoV-2 = ACE2.			
•		•			

ToppersNotes / 9614-828-828

(2021):	2. Master Numericals:
17. What mediates Pseudomonas attachment	 Calculate binding affinities (e.g., gp120-
to lung cells?	CD4 K_d ~10 ⁻⁹ M).
(A) Type IV pili (B) T3SS	\circ Estimate entry rates (e.g., ~10 ³ HIV
(C) InIA (D) FimH	virions/hour).
Solution: Type IV pili (asialo-GM1).	\circ Compute effector injection kinetics
Answer: A.	(e.g., ~10 ³ ATP/s for T3SS).
Tip: Type IV pili = Pseudomonas.	3. Eliminate Incorrect Options:
(2020):	\circ For bacterial questions, match adhesin
18. Which virus uses macropinocytosis?	to species (e.g., FimH ≠ Listeria).
(A) HIV (B) Vaccinia	\circ For viral questions, distinguish
(C) Adenovirus (D) Poliovirus	enveloped (fusion) vs. non-enveloped
Solution : Vaccinia virus.	(endocytosis).
Answer: B.	4. Avoid Pitfalls:
Tip : Vaccinia = macropinocytosis.	 Don't confuse T3SS (animal pathogens)
	vs. T4SS (Agrobacterium).
(2019):	 Don't mix up HIV (fusion) vs. adenovirus
19. What disease is caused by Yersinia entry?	(endocytosis).
(A) Plague (B) AIDS	• Distinguish animal (receptor-driven) vs.
(C) Influenza (D) Canker	plant (cell wall/vector) entry.
Solution: Plague (Yops).	5. Time Management:
Answer: A.	• Allocate 1–2 minutes for Part B
lip : Yersinia = piague.	questions (e.g., viral receptor).
(2018):	 Spend 3–4 minutes on Part C questions
20. Which plant virus is vector-transmitted?	(e.g., binding affinity calculations).
(A) HIV (B) TMV	• Practice sketching T3SS and viral fusion
(C) PVY (D) Influenza	pathways.
Solution: Potato virus Y (aphids).	Host-Parasite Interaction - Pathogen-
Answer: C.	Induced Alterations and Diseases
Tip : PVY = vector.	
Exam Tips	1. Overview of Host-Parasite Interaction -
1. Memorize Key Facts:	Pathogen-Induced Alterations and
• Bacterial Adhesins: FimH (E. coli). InIA	Diseases Dathogons manipulate best cell behavier
(Listeria). VirB (Agrobacterium).	transform colle induce diseases and
• Bacterial Entry: Zipper (Listeria), trigger	facilitate cell cell fusion to establish
(Salmonella), T4SS (Agrobacterium).	infection and propagate disease
• Viral Receptors: CD4 (HIV), ACE2 (SARS-	Alteration of Lost Coll Poblation
CoV-2), sialic acid (influenza).	Alteration of Host Cell Benavior: Dathogons (bactoria, viruses) bijesk best
\circ Viral Entry: Eusion (HIV) endocytosis	 Pathogens (bacteria, viruses) hijack host signaling, matchaling, and subsciences
(adenovirus) plasmodesmata (TMV)	dynamics to promote survival and
 Inhibitors: Enfuvirtide (HIV) oseltamivir 	roplication
(influenza).	Machanisms include affector injection
• Diseases: Plague (Yersinia). AIDS (HIV).	tovin production, and gone expression
canker (Xanthomonas).	modulation

• Virus-Induced Cell Transformation:

- Viruses (e.g., HPV, EBV) integrate oncogenes or disrupt tumor suppressors, leading to uncontrolled cell growth.
- Results in cancers (e.g., cervical cancer, lymphoma).
- Pathogen-Induced Diseases:
 - Animals: Bacterial (e.g., tuberculosis), viral (e.g., AIDS), and parasitic diseases (e.g., malaria).
 - Plants: Bacterial (e.g., citrus canker), viral (e.g., mosaic diseases), and fungal infections (e.g., rust).

• Cell-Cell Fusion:

 Normal: Syncytium formation in muscle, placenta.

- **Abnormal**: Pathogen-induced fusion (e.g., HIV syncytia, plant viral spread).
- Biological Relevance:
 - Host cell alterations drive pathogenesis and immune evasion.
 - Transformation and diseases impact health and agriculture.
 - Cell fusion facilitates pathogen spread and tissue damage.

• Applications:

- Antibiotics/antivirals target pathogen effectors (e.g., rifampicin for TB).
- Vaccines prevent transformation (e.g., HPV vaccine).
- RNAi and biocontrol mitigate plant diseases.

	0			
Component	Definition	Key Feature	Biological Role	Example
Host Cell Alteration	Pathogen	Effectors, toxins	Promotes	Salmonella SopE
	manipulation of host	,	pathogen survival	
Virus-Induced	Viral oncogene	Disrupts cell	Cancer	HPV E6/E7
Transformation	activation	cycle	development	
Animal Diseases	Pathogen-induced	Immune evasion,	Morbidity,	ТВ
	pathology	tissue damage	mortality	(Mycobacterium)
Plant Diseases	Crop infections	Stunted growth,	Agricultural	TMV mosaic disease
		yield loss	impact	
Cell-Cell Fusion	Membrane	Syncytia, viral	Pathogen	HIV gp41 syncytia
	merging	spread	propagation	iri you

Table 1: Overview of Pathogen-Induced Alterations and Diseases

2. Alteration of Host Cell Behavior by Pathogens

Pathogens manipulate host cell signaling, metabolism, and structure to facilitate infection and replication.

2.1 Bacterial Alteration in Animal Cells

Effector Proteins:

- Type III Secretion System (T3SS):
 - Salmonella enterica: SopE activates Rho GTPases, induces actin remodeling for invasion.
 - Yersinia pestis: YopH dephosphorylates FAK, inhibits phagocytosis.
- Type IV Secretion System (T4SS):
 - Legionella pneumophila: Dot/Icm effectors (e.g., RalF) recruit Arf1, form replication vacuoles.

• Efficiency: $\sim 10^2 - 10^3$ effectors injected/cell, $\sim 10^{-6}$ s/event.

• Toxins:

- Exotoxins:
 - Clostridium botulinum: Botulinum toxin cleaves SNAREs, blocks neurotransmission (flaccid paralysis).
 - Vibrio cholerae: Cholera toxin ADPribosylates Gsα, elevates cAMP, causes diarrhea.
- **Endotoxins**: LPS activates TLR4, induces inflammation (e.g., E. coli sepsis).

Regulation:

- Quorum sensing: Upregulates T3SS (e.g., Pseudomonas aeruginosa).
- Host signals: pH, temperature modulate toxin expression (e.g., 37°C for Yersinia).