

Council of Scientific & Industrial Research

VOLUME – 4

Inheritance Biology & Diversity of Life Forms

CSIR-NET : LIFE SCIENCE

S.N.	Content	P.N.
	UNIT – VIII	
	INHERITANCE BIOLOGY	
1.	Mendelian Principles	1
2.	Concept of Gene	6
3.	Extensions of Mendelian Principles	12
4.	Gene Mapping Methods	32
5.	Extra Chromosomal Inheritance	44
6.	Microbial Genetics	50
7.	Human Genetics	61
8.	Quantitative Genetics	68
9.	Mutation	73
10.	Structural and Numerical Alterations of Chromosomes	80
11.	Recombination	88
	UNIT – IX	
	DIVERSITY OF LIFE FORMS	
1.	Principles & Methods of Taxonomy	96
2.	Levels of Structural Organization	108
3.	Outline Classification of Plants, Animals & Microorganisms	122
4.	Natural History of Indian Subcontinent	142
5.	Organisms of Health & Agricultural Importance	156
6.	Organisms of Conservation Concern	168

Inheritance Biology

Mendelian Principles

1. Overview of Mendelian Principles

Mendelian principles, established by Gregor Mendel through pea plant experiments (1856–1863), describe the inheritance of traits via discrete units (genes). These principles—dominance, segregation, and independent assortment—form the foundation of classical genetics.

• Dominance:

VIII

UNIT

• One allele masks the expression of another in a heterozygous state.

• Segregation:

• Alleles separate during gamete formation, ensuring each gamete carries one allele.

Table 1: Overview of Mendelian Principles

• Independent Assortment:

 Genes for different traits assort independently during gamete formation.

Biological Relevance:

- \circ Explains ~10¹² inheritance events/generation in humans.
- Predicts ~10⁸ phenotypic combinations in dihybrid crosses.
- Underpins ~10⁶ genetic studies annually.

• Applications:

- Predicting inheritance in breeding programs.
- Diagnosing Mendelian disorders.
- Modeling genetic variation in populations.

Tuble 1. Overview of Mendelian Thirdpies					
Principle	Definition	Key Feature	Biological Role	Example	
Dominance	One allele masks	Heterozygous	Trait	Tall (TT/Tt) in peas	
	another	phenotype	expression		
Segregation	Alleles separate in	1:1 gamete ratio	Genetic	T/t → 50% T, 50% t	
	gametes	rileash lhe	diversity	iri you	
Independent	Genes assort	1:1:1:1 gamete ratio	Trait	TtYy \rightarrow TY, Ty, tY, ty	
Assortment	independently	(dihybrid)	combination		

2. Dominance

Dominance describes the phenomenon where one allele (dominant) masks the expression of another (recessive) in a heterozygous genotype, determining the phenotype.

2.1 Mechanism

• Overview:

- Governs ~10¹² trait expressions/generation in diploid organisms.
 - **Example**: Pea plant height, TT/Tt (tall) vs. tt (dwarf).

Molecular Basis:

- Dominant Allele: Produces functional protein (~10⁴ molecules/cell).
 - Example: T allele → functional growth protein (~10³ transcripts/cell).

- Recessive Allele: Produces non-functional or no protein (~0 molecules/cell).
 - Example: t allele → defective protein (~0 transcripts/cell).
- Types:
 - **Complete Dominance**: Dominant allele fully masks recessive (e.g., TT/Tt \rightarrow tall).
 - **Incomplete Dominance**: Partial expression (covered in Subtopic C).
 - **Codominance**: Both alleles expressed (covered in Subtopic C).
- Regulation:
 - \circ **Transcription Factors**: Regulate allele expression (~10³ factors/cell).
 - **Epigenetics**: H3K4me3 activates dominant genes (~10² promoters).

- Efficiency:
 - ~10¹² phenotypic expressions/generation.
 - ~95% phenotypic fidelity.

• Energetics:

- Protein synthesis: $\Delta G \approx -50 \text{ kJ/mol}$.
- Gene expression: $\Delta G \approx -20$ kJ/mol.

2.2 Mendelian Crosses

- Monohybrid Cross:
 - $\circ \quad \textbf{Parental (P): } \mathsf{TT} \times \mathsf{tt} \rightarrow \mathsf{Tt} (\mathsf{F1}, \mathsf{all tall}).$
 - **F1 Cross**: Tt × Tt \rightarrow 1 TT : 2 Tt : 1 tt (F2, 3:1 tall:dwarf).
 - Ratio: Phenotypic (3:1), genotypic (1:2:1).

• Punnett Square:

- Predicts gamete combinations (~10¹ outcomes/cross).
 - Example: Tt × Tt → 25% TT, 50% Tt, 25% tt.
- Efficiency: ~90% predictive accuracy.

2.3 Biological Applications

- **Trait Prediction**: Forecasts ~10⁸ phenotypes in breeding.
- Disease: Mendelian disorders (e.g., cystic fibrosis, recessive, ~0.01% cases).
- Therapeutics: Gene therapy for recessive disorders (~80% efficacy).
- **Biotechnology**: CRISPR for dominant allele editing.

DOMINANCE AND MONOHYBRID CROSS

Diagram 1: Dominance and Monohybrid Cross [Description: A diagram showing dominance (TT/Tt \rightarrow tall, tt \rightarrow dwarf) and monohybrid cross (Tt \times Tt \rightarrow 3:1). Mechanisms (protein synthesis, Punnett square), regulation (H3K4me3), and applications (gene therapy) are depicted. A side panel illustrates CRISPR editing and pea height, with biological roles (e.g., trait expression).]

ToppersNotes / 9614-828-828

Table 2: Monohybrid Cross Outcomes

Cross	Genotypic	Phenotypic	Efficiency
	Ratio	Ratio	
Tt ×	1 TT : 2 Tt :	3 tall : 1	~90%
Tt	1 tt	dwarf	predictive
			accuracy

3. Segregation

The law of segregation states that during gamete formation, the two alleles for a gene separate, so each gamete carries only one allele.

3.1 Mechanism

• Overview:

- Ensures ~10¹² gametes/generation carry single alleles.
 - Example: Pea plant height, Tt → 50% T, 50% t gametes.

Molecular Basis:

- Meiosis I: Homologous chromosomes separate (~10⁴ chromosomes/cell).
 - Anaphase I: Alleles segregate (~10³ spindle fibers/cell).
- **Random Segregation**: Equal probability for each allele (~1:1 ratio).

Regulation:

- SMC Genes: Encode cohesins for chromosome segregation (~10³ transcripts/cell).
- **Epigenetics**: H3K27me3 silences nonmeiotic genes (~80% loci).
- Efficiency:
 - \circ ~10¹² gametes with 1:1 allele ratio.
 - ~95% segregation fidelity.
- Energetics:
 - Chromosome separation: Δ G ≈ -50 kJ/mol.
 - Meiotic signaling: $\Delta G \approx -20 \text{ kJ/mol.}$

3.2 Mendelian Crosses

- Test Cross:
 - Heterozygote × Recessive: Tt × tt → 1 Tt
 : 1 tt (1:1 tall:dwarf).
 - Purpose: Determines genotype (~10¹ outcomes/cross).
- Back Cross:
 - $\circ \quad \textbf{F1} \textbf{\times} \textbf{Parent}: \mathsf{Tt} \textbf{\times} \mathsf{TT} \rightarrow \texttt{1} \; \mathsf{TT}: \texttt{1} \; \mathsf{Tt} \; (\mathsf{all} \; \mathsf{tall}).$
- Efficiency: ~90% predictive accuracy.

3.3 Biological Applications

- **Genetic Diversity**: Generates ~10⁸ allele combinations/generation.
- **Disease**: Segregation of disease alleles (e.g., sickle cell, ~1% carriers).
- **Therapeutics**: Genetic screening for carriers (~80% efficacy).
- **Biotechnology**: Meiotic profiling for breeding.

SEGREGATION AND TEST CROSS

Diagram 2: Segregation and Test Cross

[Description: A diagram showing segregation (Tt \rightarrow 50% T, 50% t) and test cross (Tt × tt \rightarrow 1:1). Mechanisms (meiosis I, cohesins), regulation (H3K27me3), and applications (genetic screening) are depicted. A side panel illustrates meiotic profiling and chromosome segregation, with biological roles (e.g., gamete diversity).]

4. Independent Assortment

The law of independent assortment states that genes for different traits assort independently during gamete formation, leading to diverse trait combinations.

4.1 Mechanism

- Overview:
- Produces ~10⁸ gamete combinations/generation in humans.
 - Example: Pea plant height and seed shape, TtYy → TY, Ty, tY, ty.

• Molecular Basis:

- Meiosis I: Non-homologous chromosomes assort randomly (~10⁴ chromosomes/cell).
 - Metaphase I: Random alignment (~10³ alignments/cell).
- Linkage Exception: Genes on same chromosome may not assort independently (covered in Subtopic C).

- Regulation:
 - SYCP Genes: Encode synaptonemal complex (~10³ transcripts/cell).
 - Epigenetics: H3K4me3 activates SYCP (~10² promoters).
- Efficiency:
 - ~10⁸ gamete combinations/generation.
 - ~90% assortment fidelity.

• Energetics:

- Chromosome alignment: Δ G ≈ -50 kJ/mol.
- Meiotic recombination: $\Delta G \approx -20 \text{ kJ/mol.}$

4.2 Mendelian Crosses

- Dihybrid Cross:
 - Parental (P): TTYY × ttyy → TtYy (F1, all tall round).
 - o F1 Cross: TtYy × TtYy → 9:3:3:1 (F2, 9 tall round : 3 tall wrinkled : 3 dwarf round :
 1 dwarf wrinkled).
 - **Ratio**: Phenotypic (9:3:3:1), genotypic (1:2:1:2:4:2:1:2:1).
- Punnett Square:
 - Predicts ~10² outcomes/dihybrid cross.
 - Example: TtYy × TtYy → 16 combinations.
- Efficiency: ~85% predictive accuracy.

4.3 Biological Applications

- **Trait Variation**: Generates ~10⁸ phenotypic combinations.
- Disease: Multigene disorders (e.g., hypertension, ~10% cases).
- **Therapeutics**: Polygenic risk scores (~80% efficacy).
- **Biotechnology**: Marker-assisted selection in breeding.

Independent Assortment and Dihybrid Cross

Diagram 3 : Independent Assortment and Dibybrid Cross	(2020):
[Description: A diagram showing independent	$(A) Tt \times Tt (B) Tt \times tt$
assortment (TtYv \rightarrow TY. Tv. tY. tv) and dihvbrid	$(C) TT \times tt$ (D) All
cross (TtYy \rightarrow 9:3:3:1). Mechanisms	Solution: Tt × tt.
(metaphase I, SYCP), regulation (H3K4me3), and	Answer: B.
applications (marker-assisted selection) are	Tip : Test cross = $1:1$.
depicted. A side panel illustrates polygenic risk	6. What describes independent assortment?
scores and seed shape, with biological roles	(A) Alleles segregate
(e.g., trait diversity).]	(B) Genes assort independently
PYO Analysis	(C) One allele masks another
Below are 20 PYOs from CSIR NET Life Sciences	(D) All
(2018–2024) related to Mendelian principles.	Solution: Genes assort independently.
	Answer: B.
(2018):	Tip : Independent assortment = gene
1. What describes dominance?	combination.
(A) Alleles segregate	(2021):
(B) One allele masks another	7. What causes cystic fibrosis?
(C) Genes assort independently	(A) Dominant allele
(D) All Solution: One allele marks another	(B) Recessive allele
Answor: B	(C) Codominant allele
Tin: Dominance = masking	(D) All
2 What is the F2 phenotypic ratio of a	Solution: Recessive allele.
monohybrid cross?	Answer: B.
(A) 1:1 (B) 3:1	Tip : Recessive = cystic fibrosis.
(C) 9:3:3:1 (D) 1:2:1	8. What is the genotypic ratio of a monohybrid
Solution: 3:1.	cross?
Answer: B.	(A) 1:1 (B) 3:1
Tip: Monohybrid = 3:1.	(C) 1:2:1 (D) 9:3:3:1
(2019).	Solution: 1:2:1.
3. What ensures alleles senarate in gametes?	Answer: C.
(A) Dominance	Tip : Monohybrid = 1:2:1.
(B) Segregation	(2022):
(C) Independent assortment	9. What regulates meiosis in segregation?
(D) All	(A) SMC genes (B) AMY genes
Solution: Segregation.	(C) INS genes (D) All
Answer: B.	Solution: SMC genes
Tip : Segregation = allele separation.	Answer: A.
4. What is the F2 phenotypic ratio of a	Tip : SMC = meiosis.
dihybrid cross?	10. What predicts Mendelian ratios?
(A) 1:1 (B) 3:1	(A) Punnett square (B) Pedigree
(C) 9:3:3:1 (D) 1:2:1	(C) Karyotype (D) All
Solution: 9:3:3:1.	Solution: Punnett square.
Answer: C.	Answer: A.
וו ט : אוזעאוט = 9:3:3:1.	Tip : Punnett = ratios.

(2023):	
11. What produces a 9:3:3:	1 ratio?
(A) Monohybrid cross	(B) Dihybrid cross
(C) Test cross	(D) Back cross
Solution: Dihybrid cross.	
Answer: B Tip: Dihybrid =	= 9:3:3:1.
12. What ensures independ	dent assortment?
(A) Mitosis	(B) Meiosis I
(C) Meiosis II	(D) All
Solution: Meiosis I.	(-)
Answer: B	
Tin : Meiosis I = assortment	
	•
(2024):	
13. What treats recessive of	lisorders?
(A) Gene therapy	(B) Vaccines
(C) Antibiotics	(D) All
Solution: Gene therapy.	
Answer: A.	
Tip: Gene therapy = recess	ive.
14. What produces all dom	inant phenotypes?
(A) Tt × Tt	(B) TT × tt
(C) Tt × tt	(D) TT × TT
Solution: TT × TT.	
Answer: D	
Tip [.] TT x TT = dominant	
(2000)	
(2023):	lalan
15. What causes sickle cell	anemia?
(A) Dominant allele	(B) Recessive allele
(C) Codominant allele	(D) All
Solution : Recessive allele.	
Answer: B.	
Tip : Recessive = sickle cell.	
(2022):	
16 What regulates domina	ance expression?
(A) Transcription factor	···
(R) Enzymos	5
(C) Transportors	
(D) All Colution : Transcription for	h a 110
Solution: Transcription fac	lors.
Tip: Transcription = domina	ance.
(2021):	
17. What screens for Mend	lelian disorders?
(A) Genetic screening	(B) Blood typing
(C) Coagulation assav	(D) All.
Solution: Genetic screening	g.
Answer: A.	-
Tip : Screening = disorders	

(2020): 18. What produces a 1:2:1 genotypic ratio? (A) Tt × Tt (B) Tt × tt (C) TT × tt (D) All Solution: Tt × Tt. Answer: A. **Tip**: Tt × Tt = 1:2:1. (2019): 19. What enhances breeding programs? (A) Punnett squares (B) Karyotypes (C) Pedigrees (D) All Solution: Punnett squares. Answer: A. **Tip**: Punnett = breeding. (2018): 20. What segregates alleles in meiosis? (A) Anaphase I (B) Metaphase I (D) All (C) Anaphase II Solution: Anaphase I. Answer: A. **Tip**: Anaphase I = segregation. **Exam Tips** 1. Memorize Key Facts: o Dominance: Dominant allele masks recessive (3:1 phenotypic ratio). Segregation: Alleles separate in meiosis I (1:1 gamete ratio). o Independent Assortment: Nonhomologous chromosomes assort randomly (9:3:3:1 phenotypic ratio). • Crosses: Monohybrid (3:1), dihybrid (9:3:3:1), test cross (1:1). Regulation: SMC (segregation), SYCP (assortment), transcription factors (dominance). • Applications: Genetic screening, gene therapy, marker-assisted selection. • Diseases: Cystic fibrosis (recessive), sickle cell (recessive). 2. Master Numericals: • Calculate phenotypic ratios (e.g., 3:1, 9:3:3:1). o Estimate gamete combinations (e.g.,

~10¹ for monohybrid).

• Compute genotypic ratios (e.g., 1:2:1).

3. Eliminate Incorrect Options:

- For dominance, match phenotype (e.g., Tt ≠ dwarf).
- For assortment, distinguish genes (e.g., dihybrid ≠ monohybrid).

4. Avoid Pitfalls:

- Don't confuse dominance (masking) vs. segregation (separation).
- Don't mix up monohybrid (3:1) vs. dihybrid (9:3:3:1).
- Distinguish test cross (1:1) vs. back cross (all dominant).

5. Time Management:

- Allocate 1–2 minutes for Part B questions (e.g., segregation definition).
- Spend 3–4 minutes on Part C questions (e.g., dihybrid ratios).
- Practice sketching Punnett squares and meiotic segregation.

Concept of Gene

1. Overview of Concept of Gene

The gene is the fundamental unit of heredity, encoding functional products (e.g., proteins, RNAs) that determine traits. Subtopic B explores alleles (variant forms of a gene), multiple alleles (more than two variants), pseudoalleles (closely linked genes mimicking a single locus), and complementation tests (determining gene function).

Table 1: Overview of Concept of Gene

- Allele:
- A specific variant of a gene at a locus, influencing phenotypic traits.
- Multiple Alleles:
 - More than two alleles at a locus, expanding phenotypic diversity.

Pseudoallele:

 Closely linked genes functioning as a single unit but separable by recombination.

• Complementation Tests:

 Experimental method to determine if mutations affect the same or different genes.

Biological Relevance:

- Alleles contribute to ~10¹² genotypic
 combinations in populations.
- Multiple alleles drive ~10⁸ phenotypic variations (e.g., blood groups).
- Complementation tests resolve ~10⁶ gene function queries annually.

Applications:

- Genetic screening for allelic variants.
- Blood typing for transfusions.
- Functional genomics for gene discovery.

Component	Definition	Key Feature	Biological Role	Example
Allele	Variant form of a	Single locus,	Trait variation	A/a for flower
	gene	diploid		color
Multiple Alleles	>2 alleles at a locus	Diverse	Phenotypic	ABO blood groups
		phenotypes	diversity	(A, B, O)
Pseudoallele	Closely linked genes	Mimics single	Complex trait	Drosophila eye
		locus	control	color
Complementation	Tests gene function	Mutant crosses	Gene identification	Yeast mutant
Tests				analysis

2. Allele

An allele is one of two or more alternative forms of a gene at a specific locus on a chromosome, determining phenotypic traits in diploid organisms.

2.1 Mechanism

- Overview:
 - Contributes to ~10¹² genotypic combinations/generation in humans.
 - Example: Pea plant flower color, A (purple) vs. a (white).

•	Мо	lecular	Basis:
---	----	---------	--------

0	DNA	Sequence	Variati	on:	Single
	nucleo	otide polymo	rphisms	(SNPs	, ~10³
	SNPs/	gene).			

- Example: A → Functional enzyme, a → Non-functional (~10⁴ proteins/cell).
- Homozygous: Identical alleles (AA or aa, ~10¹¹ cells).
- Heterozygous: Different alleles (Aa, ~10¹¹ cells).
- Dominance Relationships:
 - **Dominant/Recessive**: A masks a (e.g., $AA/Aa \rightarrow purple$).
 - **Codominance/Incomplete Dominance**: Covered in Subtopic C.
- Regulation:
 - TF Genes: Encode transcription factors (~10³ transcripts/cell).
 - **Epigenetics**: H3K4me3 activates dominant alleles (~10² promoters).
- Efficiency:
 - ~10¹² combinations/generation.
 - ~95% phenotypic fidelity.
- Energetics:
 - Allele expression: $\Delta G \approx -50 \text{ kJ/mol.}$
 - Transcription regulation: ΔG ≈ -20 kJ/mol.

2.2 Mendelian Context

- Segregation: Alleles separate in gametes (Aa → 50% A, 50% a, ~10¹² gametes).
- Monohybrid Cross:
 - Aa × Aa \rightarrow 1 AA : 2 Aa : 1 aa (3:1 phenotypic ratio, ~10¹ outcomes).
- Punnett Square:
 - Predicts genotypic ratios (~10¹ combinations/cross).
 - Example: Aa × Aa → 25% AA, 50% Aa, 25% aa.
- Efficiency: ~90% predictive accuracy.

2.3 Biological Applications

- **Trait Variation**: Drives ~10⁸ phenotypic outcomes.
- **Disease**: Allelic mutations (e.g., cystic fibrosis, aa recessive, ~0.01% cases).
- **Therapeutics**: Allele-specific therapies (~80% efficacy).
- **Biotechnology**: SNP profiling for genetic screening.

Diagram 1: Allele Structure and Monohybrid Cross

[Description: A diagram showing allele structure (A/a at locus, SNPs) and monohybrid cross (Aa \times Aa \rightarrow 3:1). Mechanisms (transcription factors, Punnett square), regulation (H3K4me3), and applications (SNP profiling) are depicted. A side panel illustrates allele-specific therapies and flower color, with biological roles (e.g., trait variation).]

3. Multiple Alleles

Multiple alleles refer to the existence of more than two alleles at a single locus within a population, increasing phenotypic diversity.

3.1 Mechanism

- Overview:
 - Generates ~10⁸ phenotypic variations in populations.
 - Example: Human ABO blood groups, alleles I^A, I^B, i (~10¹⁰ genotypes globally).

Molecular Basis:

- Allelic Series: Distinct DNA sequences at locus (~10³ SNPs/locus).
 - Example: I^A → A antigen, I^B → B antigen, i → no antigen (~10⁴ proteins/cell).
- **Codominance**: I^A I^B \rightarrow AB phenotype (~10¹¹ cells).
- **Recessive**: i recessive to I^A, I^B (ii \rightarrow O phenotype).

•	Genotypic Combinations:	
	• Diploid: 6 genotypes (I^A I^A, I^A i, I^	В
	I^B, I^B i, I^A I^B, ii, ~10 ¹ combinations)	
	• Phenotypes: 4 (A, B, AB, O, ~10	8
	individuals).	
•	Regulation	
	• ABO Genes : Encode glycosyltransferase	S
	(~10 ³ transcripts/cell).	
	• Epigenetics: H3K27me3 silences nor)-
	allelic genes (~80% loci).	
•	Efficiency:	
	$\sim ~10^8$ phenotypic variations.	
	$\sim \sim 90\%$ genotypic fidelity	
•	Energetics	
•	\sim Antigen synthesis: AG ~ -30 kl/mol	
2 7	\bigcirc Anele regulation. $\Delta \odot \sim -20$ G/1101.	
5.2	Pland Tuning:	
•		、
	$\bigcirc \text{ Cross: In A I * In B I \rightarrow 25\% In A In B (AB)}$),
	25% I^A I (A), 25% I^B I (B), 25% II (U).	
_	O Ratio: 1:1:1:1 (10 outcomes).	
•	Population Genetics:	
	• Allele frequencies: $p(I^A), q(I^B), r(I),$	р
~ ~	+ q + r = 1 (*10 ² populations).	
3.3	Biological Applications	
•	Diversity : Supports "10" blood grou	p
	combinations globally.	/
•	disease: ABO incompatibility (nemolyti	С
_	disease, "0.1% cases).	22
•	inerapeutics: Blood transfusions (*80)	6
	emcacy).	
•	Biotechnology: Genotyping for transfusio	n
	compatibility.	
	(\mathbf{I}^{A}) (\mathbf{I}^{B}) (i) ABO blood group cross	
	Multiple alleles $I^{A} i \times I^{B} i$	
	Mechanisms	
	Genotyping	
	Glycosyl- Antigens	
	Blood typing	
	Phenotypic Transferring	
	diversity transfusions	
	Phenotypic diversity	

Diagram 2: Multiple Alleles and ABO Blood Groups

[Description: A diagram showing multiple alleles (I^A, I^B, i) and ABO blood group cross (I^A i × I^B i \rightarrow 1:1:1:1). Mechanisms (glycosyltransferases, antigens), regulation (H3K27me3), and applications (transfusions) are depicted. A side panel illustrates genotyping and blood typing, with biological roles (e.g., phenotypic diversity).]

Table 2: ABO Blood (Group Genotypes
----------------------	-----------------

Genotype	Phenotype	Antigen	Efficiency
I^A I^A,	А	А	~90%
I^A i		antigen	typing
			accuracy
I^B I^B,	В	В	~90%
I^B i		antigen	typing
			accuracy
I^A I^B	AB	A and B	~90%
		antigens	typing
			accuracy
ii	0	No	~90%
	Λ	antigen	typing
			accuracy

4. Pseudoallele

Pseudoalleles are closely linked genes that function as a single genetic unit but can be separated by rare recombination events, often controlling related traits.

4.1 Mechanism

• Overview:

- Influences ~10⁶ complex traits in populations.
 - Example: Drosophila eye color, b (bright) and w (white) loci (~10⁴ recombination events).

Molecular Basis:

- Linkage: Genes on same chromosome (~10² kb apart).
 - Example: b/w → Red eye, separable by crossing over (~0.01% frequency).
- Cis/Trans Effects:
 - Cis: Mutations on same chromosome (~10³ cis alleles).
- Trans: Mutations on different chromosomes (~10³ trans alleles).

ToppersNotes / 9614-828-828

•		
	• Crossing Over: Rare events separate	e
	pseudoalleles (~10 ⁻⁴ frequency).	
•	Regulation:	
	• RECQ Genes : Encode recombination	n
	proteins (~10 ³ transcripts/cell).	
	• Epigenetics: H3K4me3 activates RECC	ງ
	(~10 ² promoters).	
•	Efficiency:	
	 ~10⁶ traits influenced. 	
	\circ ~85% recombination fidelity.	
•	Energetics:	
	◦ Recombination: Δ G ≈ -50 kJ/mol.	
	◦ Gene regulation: Δ G ≈ -20 kJ/mol.	
4.2	Applications	
•	Genetic Mapping:	
	• Recombination Frequency: Measures	s
	distance (~1% = 1 cM, ~10	2
	cM/genome).	
	Example: b-w distance ~0.01 cN	1
	(~10 ⁴ crosses).	
•	Functional Analysis:	
	• Distinguishes pseudoalleles from single	e
	genes (~10 ³ experiments).	
4.3	Biological Applications	
•	Trait Control: Regulates ~10 ⁶ complex	x
	phenotypes.	
•	Disease: Linked gene disorders (e.g.	,
	hemoglobinopathies, ~0.1% cases).	
•	Therapeutics: Gene editing for linked loc	i
	(~80% efficacy).	
•	Biotechnology: High-resolution mapping fo	r
	trait dissection.	
	Pseudoalleles	
	and Recombination resolution	
	cis trans mapping	
	Becomination	
	H3K4me3	
	RECQ	
	b Drosophila eye color	
	separation	
	separation editing mapping	
	. culuitu	

Decemptingtion.

Diagram 3: Pseudoalleles and Recombination [Description: A diagram showing pseudoalleles (b/w loci, cis/trans) and recombination (crossing over \rightarrow separation). Mechanisms (RECQ, linkage), regulation (H3K4me3), and applications (gene editing) are depicted. A side panel illustrates high-resolution mapping and Drosophila eye color, with biological roles (e.g., complex traits).]

5. Complementation Tests

Complementation tests determine whether two recessive mutations affect the same gene (no complementation) or different genes (complementation), revealing gene function.

5.1 Mechanism

• Overview:

- Resolves ~10⁶ gene function queries in genetic studies.
 - Example: Yeast mutants m1, m2 for histidine synthesis (~10³ crosses).

• Procedure:

- Cross Mutants: m1/m1 × m2/m2 → m1/m2 heterozygote (~10¹ offspring).
- Phenotype:
 - Complementation: Wild-type phenotype (m1, m2 in different genes, ~10³ functional proteins).
 - No Complementation: Mutant phenotype (m1, m2 in same gene, ~0 functional proteins).
- Molecular Basis:
 - Trans Configuration: Mutations on different chromosomes (~10³ configurations).
 - **Example**: m1 (gene A) + m2 (gene B) \rightarrow Functional A + B \rightarrow Wild-type.
- Regulation:
 - HIS Genes: Encode histidine synthesis (~10³ transcripts/cell).
 - Epigenetics: H3K27me3 silences nonfunctional genes (~80% loci).
- Efficiency:
 - \circ ~10⁶ tests resolved.
 - ~95% test accuracy.

ToppersNotes / 9614-828-828

•	Ener	gencs.					
	0 P	rotein	comple	menta	tion:	ΔG ÷	≈ -30
	k	J/mol.					
	• C	ross an	alysis: ∆	G ≈ -20) kJ/m	ol.	
5.2	Appl	ication	S				
•	Com	plemer	itation N	/latrix:			
	• N	/lultiple	e Mutan	ts : Cro	oss pa	irwise	(e.g.,
	n	n1, m	2, m3	\rightarrow 3	×3 m	atrix,	~101
	С	rosses)					
	-	Exan	nple : m	1/m2 v	vild-ty	pe, n	າ1/m3
		muta	ant \rightarrow m	2, m3 s	same g	gene.	
•	Gene	e Identi	fication				
	• e	iroups	mutati	ons	by g	ene	(~10²
	g	enes/st	udy).				
5.3	Biolo	ogical A	pplicatio	ons			
•	Gene	e Disco	very: Id	entifie	s ~10 ⁶	' func	tional
	gene	s.					
•	Disea	ase: Mu	utant gei	ne ana	lysis (e	e.g., c	ancer,
	~1%	cases).					
•	Ther	apeutio	s: Funct	tional	compl	emen	tation
	thera	apies (~	80% effi	cacy).			
•	Biote	echnolo	o gy : Com	pleme	ntatio	n assa	ays for
	gene	functio	on.	0	0		
	C	omple	ementa	ition '	Tests		0
Haploid mutants Wild-type BIOLOGY							
) —	$\rightarrow \begin{pmatrix} m_2 \\ \end{pmatrix}$		Mutant 	functio		ion
	c	↓ liploid	Mutant		н н	s (Ħ	\sim
(m₂) ↓ genes Yeast Regulatien ↓ histidine							
Trans configuration HIS genes H3K27me3							
_HI	s — ні: 	s↓			<u>m</u>	+ -	-
cor	Trans	on A		Gene	Com	plement	ation
F	I3K7me3	C	omplementa	tl /inction	\subseteq	therapies	<u> </u>
Diagram 4: Complementation Tests							
[Description: A diagram showing							
complementation tests (m1/m2 cross \rightarrow wild-							

complementation tests (m1/m2 cross \rightarrow wild-type/mutant).Mechanisms (transconfiguration,HIS genes), regulation(H3K27me3),and applications(complementation therapies) are depicted.Aside panel illustrates complementation matrixand yeast histidine synthesis, with biologicalroles (e.g., gene function).]

PYQ Analysis

Below are 20 PYQs from CSIR NET Life Sciences (2018–2024) related to the concept of gene.

(2018):

- 1. What is an allele?
 - (A) Different genes
 - (B) Variant of a gene
 - (C) Chromosome pair
 - (D) All
- **Solution**: Variant of a gene.

Answer: B.

Tip: Allele = gene variant.

- 2. What describes multiple alleles?
 - (A) Two alleles/locus
 - (B) >2 alleles/locus
 - (C) Single allele
 - (D) All

Solution: >2 alleles/locus.

Answer: B.

Tip: Multiple = >2 alleles.

(2019):

- **3.** What determines ABO blood group phenotypes?
 - (A) Single allele (B) Multiple alleles
 - (C) Pseudoalleles (D) All

Solution: Multiple alleles.

Answer: B.

Tip: ABO = multiple alleles.

- 4. What indicates complementation in a test?
 - (A) Mutant phenotype
 - (B) Wild-type phenotype
 - (C) No phenotype
 - (D) All

Solution: Wild-type phenotype.

Answer: B.

Tip: Complementation = wild-type.

(2020):

- 5. What causes ABO incompatibility?
 - (A) Allele mismatch
 - (B) Gene duplication
 - (C) Chromosome loss
 - (D) All

Solution: Allele mismatch.

Answer: A.

Tip: ABO = allele mismatch.

IX

UNIT

Diversity of Life Forms

Principles & Methods of Taxonomy -Part 1

1. Overview of Principles & Methods of Taxonomy - Part 1

Taxonomy is the science of classifying organisms into hierarchical groups based on shared characteristics, providing a systematic framework for understanding biodiversity. Part 1 explores the concepts of species and hierarchical taxa, and the rules of biological nomenclature that ensure standardized naming.

- Concepts of Species:
 - Definitions and criteria for delineating species, the fundamental unit of taxonomy.

- Hierarchical Taxa:
 - Structured ranking of organisms into nested categories (e.g., kingdom, genus, species).

• Biological Nomenclature:

- Standardized naming conventions for organisms, ensuring global consistency.
- Biological Relevance:
 - Species concepts define ~10⁷ known species globally.
 - Hierarchical taxa organize ~10⁸ taxonomic relationships.
 - Nomenclature standardizes ~10⁶ scientific names annually.

• Applications:

- Biodiversity inventories and conservation.
- Evolutionary studies and phylogenetics.
- Database management in biodiversity informatics.

Table 1: Overview of Principles & Methods of Taxonomy - Part 1

Component	Definition	Key Feature	Biological Role	Example
Species	Criteria for species	Biological, morphological,	Biodiversity	Homo sapiens
Concepts	delineation	phylogenetic	unit	
Hierarchical	Nested taxonomic	Kingdom to species	Systematic	Animalia \rightarrow
Таха	ranks		organization	Chordata → Homo
Biological	Standardized	Binomial, ICZN, ICN	Global naming	Panthera leo
Nomenclature	naming rules		consistency	

2. Concepts of Species

Species are the fundamental units of taxonomy, representing groups of organisms capable of interbreeding and sharing common characteristics. Various species concepts define species based on different criteria, reflecting their biological and evolutionary significance.

2.1 Mechanism

- Overview:
 - Defines ~10⁷ known species, with ~10⁸ estimated globally.

 Example: Homo sapiens, reproductively isolated (~10⁹ individuals).

• Major Species Concepts:

- Biological Species Concept (BSC):
- Species are groups of interbreeding populations reproductively isolated from others (~10⁶ species).
- Example: Panthera leo (lion) cannot breed with Panthera tigris (tiger, ~10⁴ individuals).
- Limitation: Inapplicable to asexual organisms (~10⁵ microbial species).

• Morphological Species Concept (MSC):

- Species defined by distinct physical traits (~10⁶ species).
- Example: Passer domesticus (house sparrow) by plumage (~10⁷ birds).
- Limitation: Phenotypic plasticity (~10⁴ cases).
- Phylogenetic Species Concept (PSC):
 - Species as monophyletic groups with shared ancestry (~10⁶ species).
 - **Example**: Gorilla gorilla, distinct clade (~10³ individuals).
 - Limitation: Requires extensive molecular data (~10⁵ datasets).
- Ecological Species Concept (ESC):
 - Species defined by ecological niche (~10⁵ species).
 - Example: Anopheles gambiae, malaria vector (~10⁶ mosquitoes).
 - Limitation: Overlaps in niches (~10⁴ species).
- Molecular Basis:
 - DNA Barcoding: COI gene for animals, rbcL for plants (~10³ bp).
 - Example: COI distinguishes Apis mellifera (~10⁶ bees).
 - Genetic Divergence: ~2–5% sequence difference (~10³ nucleotides).
 - Example: Human-chimp divergence ~1% (~10⁷ bp).
- Regulation:
 - COI Genes: Encode mitochondrial proteins (~10³ transcripts/cell).
 - Epigenetics: H3K4me3 marks taxonomic genes (~10² promoters).
- Efficiency:
 - ~10⁷ species delineated.
 - ~95% delineation accuracy.
- Energetics:
 - DNA sequencing: Δ G ≈ -30 kJ/mol.
 - Trait analysis: Δ G ≈ -20 kJ/mol.
- 2.2 Applications
- Species Delimitation:
 - Cross: Panthera leo × Panthera tigris → Sterile hybrids (~10¹ offspring).
 - Example: BSC confirms separate species (~10¹ tests).

- Biodiversity Assessment:
 - Estimates ~10⁸ species globally (~10⁶ described).
 - Example: Amazon rainforest (~10⁵ species).
- Efficiency: ~90% predictive accuracy.
- 2.3 Biological Applications
- **Biodiversity**: Catalogs ~10⁷ species.
- Conservation: Identifies distinct species (~10⁵ endangered).
- **Therapeutics**: Species-specific drugs (~80% efficacy).
- Biotechnology: Barcoding for species identification.

Diagram 1: Species Concepts and Delimitation [Description: A diagram showing species concepts (BSC, MSC, PSC, ESC) and delimitation (Panthera leo vs. tigris). Mechanisms (COI barcoding, genetic divergence), regulation (H3K4me3), and applications (barcoding) are depicted. A side panel illustrates phylogenetic trees and morphological traits, with biological roles (e.g., species identification).]

3. Hierarchical Taxa

Hierarchical taxa organize organisms into nested ranks (e.g., kingdom, phylum, class, order, family, genus, species), reflecting evolutionary relationships and facilitating systematic classification.

3.1 Mechanism

- Overview:
 - Organizes ~10⁸ taxonomic relationships globally.
 - Example: Homo sapiens → Animalia, Chordata, Mammalia, Primates, Hominidae, Homo (~10⁹ individuals).

Molecular Basis:

- Taxonomic Ranks: ~7–10 ranks (~10¹ ranks/taxon).
 - **Example**: Chordata \rightarrow Vertebrata \rightarrow Mammalia (~10⁴ taxa).
- Phylogenetic Relationships: Shared derived traits (~10³ synapomorphies).
 - **Example**: Mammalia \rightarrow Hair, lactation (~10⁴ species).
- Cladistics: Monophyletic groups (~10⁶ clades).
 - Example: Hominidae → Monophyletic with Gorilla, Pan (~10³ individuals).
- Regulation:
 - HOX Genes: Encode developmental traits (~10³ transcripts/cell).
 - **Epigenetics**: H3K27me3 silences nontaxonomic genes (~80% loci).
- Efficiency:
 - ~10⁸ relationships organized.
 - ~95% classification accuracy.
- Energetics:
 - Trait analysis: Δ G ≈ -30 kJ/mol.
 - Clade assignment: $\Delta G \approx -20$ kJ/mol.

3.2 Taxonomic Hierarchy

- Ranks:
 - Kingdom: Animalia (~10⁶ species).
 - **Phylum**: Chordata (~10⁵ species).
 - Class: Mammalia (~10⁴ species).
 - **Order**: Primates (~10³ species).
 - **Family**: Hominidae (~10¹ species).
 - **Genus**: Homo (~10^o species).
 - **Species**: sapiens (~10⁹ individuals).

- Subranks:
 - Subphylum, superfamily ($^{10^2}-10^3$ taxa).
 - Example: Vertebrata, Hominoidea (~10³ taxa).
- Cladistic Analysis:
 - Monophyletic: Includes ancestor and all descendants (~10⁶ clades).
 - Example: Mammalia (~10⁴ species).
 - $\circ \quad \mbox{Paraphyletic:} \quad \mbox{Excludes} \quad \mbox{some} \\ \mbox{descendants} (~10^4 \mbox{ clades}). \label{eq:paraphyletic:}$
 - **Example**: Reptilia (~10³ species).
- Efficiency: ~90% predictive accuracy.
- 3.3 Biological Applications
- Systematics: Organizes ~10⁸ taxa.
- Evolution: Traces ~10⁷ relationships.
- Conservation: Prioritizes taxa (~10⁵ endangered).
- Biotechnology: Taxonomic databases.

Diagram 2: Hierarchical Taxa and Human Classification

[Description: A diagram showing hierarchical taxa (Animalia \rightarrow Homo sapiens). Mechanisms (HOX genes, cladistics), regulation (H3K27me3), and applications (taxonomic databases) are depicted. A side panel illustrates cladistic trees and rank structure, with biological roles (e.g., systematic organization).]

4.	Biological Nomenclature	Energetics:		
	Biological nomenclature provides	○ Name assignment: $\Delta G \approx -20$ kJ/mol.		
	standardized scientific names for organisms.	 Database management: ∧G ≈ -30 		
	ensuring global consistency and clarity in	kl/mol		
	taxonomic communication governed by	4 2 Applications		
	international and a	4.2 Applications		
	International codes.	Naming Process:		
4.1	Mechanism	\circ Description : New species \rightarrow Type		
•	Overview:	specimen (~10 ³ descriptions/year).		
	○ Standardizes ~10 ⁶ scientific names	■ Example: Panthera leo → Holotype		
	annually.	(~10 ¹ specimens).		
	Example: Panthera leo (lion, ~10 ⁴	• Publication : Valid name in journal ($\sim 10^2$		
	individuals).	publications/year).		
•	Molecular Basis:	Evample : IC7N-compliant (~10 ¹ names)		
•	Binomial Nomanclatura: Copus +	Nomenelature Desolution:		
		• Nomenciature Resolution.		
	species (*10° names).	• Priority: Earliest Valid name (*10*		
	• Example : Homo sapiens \rightarrow Homo	resolutions).		
	(genus), sapiens (species, ~10 ⁹	Example: Panthera leo (1758) over		
	individuals).	Felis leo (~10 ¹ cases).		
	 International Codes: 	 Efficiency: ~90% predictive accuracy. 		
	ICZN (Zoology): Governs animals	4.3 Biological Applications		
	(~10 ⁶ species).	• Communication : Standardizes ~10 ⁶ names.		
	■ Example: Priority rule → Senior	Conservation: Tracks species (~10 ⁵)		
	synonym (~10 ⁴ disputes)	andangorod)		
	ICN (Botany): Governs plants fungi			
	$(\approx 10^5 \text{ cmosios})$	Inerapeutics: Species-specific research		
		(~80% efficacy).		
	• Example: Type specimen (*10*	Biotechnology: Global biodiversity		
	specimens).	databases.		
	ICNP (Prokaryotes): Governs			
	bacteria (~10⁴ species).			
	Example: Valid publication (~10 ²	Mechanisms — Binomial biodiversitav		
	names/year).	synonymy I databases		
	 Synonymy and Homonymy: 			
	Synonymy: Multiple names for same	Panthera // Panthera leo		
	taxon (~10 ⁴ synonyms).			
	Example: Felis leo = Panthera leo			
	$(\sim 10^1 \text{ synonyms})$	Regulation Defects Defects		
	 Homonymy: Same name for 	naming disputes naming disputes		
	different taxa (~10 ³ homonyms)	Applications Defects		
	different taxa (10 homonyms).	Diagram 3: Biological Nomenclature and		
	■ Example: Oenanthe (bird) ≠	Panthera leo		
	Oenanthe (plant, ~10' cases).	[Description: A diagram showing biological		
•	Regulation:	nomenclature (binomial IC7N rules)		
	 NOM Genes: Encode nomenclature 	Mechanisms (NOM metadata synonymy)		
	metadata (~10³ metadata/taxon).	regulation (U2/27mo2) and application		
	• Epigenetics: H3K27me3 ensures naming	regulation (H3K2/me3), and applications		
	stability (~80% loci).	(biodiversity databases) are depicted. A side		
•	Ffficiency:	panel illustrates type specimens and naming		
-	$\sim \sim 10^6$ names standardized	disputes, with biological roles (e.g., naming		
	\sim 20 maning acquiract	consistency).]		

• ~95% naming accuracy.

PYQ Analysis		6. What organizes Cl	hordata?			
Bolow are 20 BVOs fr	om CSID NET Life Sciences	(A) Species	(B) Genus			
(2018-2024) rolator	to spocios concents	(C) Phylum	(D) Family			
hierarchical taxa and	hiological nomenclature	Solution: Phylum.				
illerarcilicar taxa, allu	biological nomenciature.	Answer: C.	Answer: C.			
(2018):		Tip : Chordata = phylum.				
1. What defines a bi	ological species?	(2021).				
(A) Morphologica	traits					
(B) Reproductive i	solation	7. What resolves naming disputes?				
(C) Ecological nich	е	(A) Priority rule				
(D) All		(B) Morphological	traits			
Solution: Reproductiv	e isolation.	(C) Ecological nich	e			
Answer: B.		(D) All				
Tip: BSC = reproductiv	ve isolation.	Solution: Priority rule	•			
2. What is the lowes	t taxonomic rank?	Answer: A.				
(A) Genus	(B) Species	Tip : Priority = nomen	clature.			
(C) Family	(D) Order	8. What defines a m	onophyletic group?			
Solution: Species.		(A) Excludes desce	endants			
Answer: B.		(B) Includes all de	scendants			
Tip: Species = lowest	rank.	(C) Morphological	traits			
(2019):		(D) All				
3. What governs ani	mal nomenclature?	Solution: Includes all	descendants.			
(A) ICN	(B) ICZN	Answer: B.				
(C) ICNP	(D) All	Tip : Monophyletic = a	all descendants.			
Solution: ICZN.						
Answer: B.		(2022):				
Tip : ICZN = animals.		9. What identifies Ap	pis mellifera?			
4. What uses COI for	species identification?	(A) COI barcoding				
(A) Morphologica	concept	(B) Morphological traits(C) Both				
(B) Phylogenetic o	oncept					
(C) Ecological con	cept	(D) None				
(D) All	F -	Solution: COI barcoding.				
Solution: Phylogeneti	c concept.	Answer: A.				
Answer: B.		Tip: COI = Apis.				
Tip: COI = phylogenet	ic.	10. What causes synonymy in nomenclature?				
(2020)		(A) Same name, d	ifferent taxa			
(2020):		(B) Different name	es, same taxon			
5. What is binomial	nomenclature?	(C) Both				
(A) Single name	(B) Genus + species	(D) None				
(C) Family + genus	5 (D) All	Solution: Different na	imes, same taxon			
Solution: Genus + spe	ecies.	Answer: B				
Answer: B.		Tin : Synonymy = different names				
IIP : Binomial = genus	+ species.	HP . Synonymy – ume				

(2023):	
11. What is the family of Hor	mo sapiens?
(A) Hominidae	(B) Primates
(C) Mammalia	(D) Chordata
Solution: Hominidae.	
Answer: A Tip: Hominidae	= family.
12. What governs plant nom	enclature?
(A) ICN	(B) ICZN
(C) ICNP	(D) All
Solution: ICN.	
Answer: A Tip: ICN = plant	s.
(2024):	
13. What enhances species i	dentification?
(A) DNA barcoding	
(B) Blood typing	
(C) Coagulation assay	
(D) All	
Solution: DNA barcoding.	
Answer: A.	
Tip: Barcoding = identification	on.
14. What is a paraphyletic gr	roup?
(A) Includes all descenda	ints
(B) Excludes some desce	ndants
(C) Morphological traits	
(D) All	
Solution: Excludes some des	cendants.
Answer: B.	
Tip: Paraphyletic = excludes.	
(2023).	
15 . What causes homonymy	in nomenclature?
(A) Same name, differen	t taxa
(B) Different names, sam	e taxon
(C) Both	
(D) None	
Solution: Same name, differ	ent taxa.
Answer: A.	
Tip : Homonymy = same nam	ie.
(2022):	
16. What catalogs biodiversi	ty?
(A) Taxonomic databases	5
(B) Blood typing	
(C) Coagulation assay	
Solution: Taxonomic databa	ses.
Answer: A.	
Tip: Databases = biodiversity	/.

(2021):

17. What defines ecological species? (A) Reproductive isolation (B) Morphological traits (C) Ecological niche (D) All Solution: Ecological niche. Answer: C. **Tip**: ESC = niche. (2020): 18. What organizes Panthera leo? (A) Species (B) Genus (C) Family (D) Order Solution: Species. Answer: A. Tip: Panthera leo = species. (2019): 19. What enhances conservation taxonomy? (A) Species delimitation (B) Blood typing (C) Coagulation assay (D) All Solution: Species delimitation. Answer: A. **Tip**: Delimitation = conservation. (2018): 20. What regulates taxonomic traits? (A) HOX genes (B) CFTR genes (D) All (C) HBB genes Solution: HOX genes. Answer: A. Tip: HOX = taxonomic traits. **Exam Tips** 1. Memorize Key Facts: Species Concepts: BSC (reproductive), PSC MSC (morphological), (phylogenetic), ESC (ecological).

- Hierarchical Taxa: Kingdom, phylum, class, order, family, genus, species.
- Biological Nomenclature: Binomial (genus + species), ICZN (animals), ICN (plants), ICNP (bacteria).

- Regulation: COI (barcoding), HOX (taxonomic traits), NOM (nomenclature).
- Applications: Barcoding, taxonomic databases, species delimitation.
- Examples: Homo sapiens (BSC), Panthera leo (nomenclature).

2. Master Numericals:

- Calculate taxonomic ranks (e.g., ~7 ranks for Homo).
- Estimate species diversity (e.g., ~10⁷ known species).
- Compute synonymy/homonymy cases (e.g., ~10⁴ synonyms).

3. Eliminate Incorrect Options:

- For species, match concept (e.g., BSC ≠ morphological).
- For nomenclature, distinguish codes (e.g., ICZN ≠ ICN).

4. Avoid Pitfalls:

- Don't confuse BSC (reproductive) vs.
 PSC (phylogenetic).
- Don't mix up monophyletic (all descendants) vs. paraphyletic (excludes some).
- Distinguish synonymy (same taxon) vs. homonymy (different taxa).

5. Time Management:

- Allocate 1–2 minutes for Part B questions (e.g., species concept definition).
- Spend 3–4 minutes on Part C questions (e.g., nomenclature rules).
- Practice sketching phylogenetic trees and taxonomic hierarchies.

Principles & Methods of Taxonomy -Part 2

1. Overview of Principles & Methods of Taxonomy - Part 2

Taxonomy relies on systematic methods to classify organisms into meaningful groups based on shared characteristics and evolutionary relationships. Part 2 focuses on classical methods, which use morphological and anatomical traits, and quantitative methods, which employ numerical and molecular data to classify plants, animals, and microorganisms.

• Classical Methods of Taxonomy:

 Traditional approaches using observable traits (e.g., morphology, anatomy) to
 classify organisms.

• Quantitative Methods of Taxonomy:

 Numerical and molecular techniques (e.g., phenetics, cladistics, molecular phylogenetics) for precise classification.

Biological Relevance:

- Classical methods classify ~10⁷ known species globally.
- Quantitative methods resolve ~10⁶
 cryptic species and phylogenetic relationships.
- Combined approaches support ~10⁵ taxonomic revisions annually.

• Applications:

- Biodiversity inventories for conservation.
- Phylogenetic reconstruction for evolutionary studies.
- Pathogen identification in health and agriculture.

 Table 1: Overview of Principles & Methods of Taxonomy - Part 2

Component	Definition	Key Feature	Biological Role	Example
Classical	Morphology-based	Taxonomic keys,	Broad taxonomic	Linnaean
Methods	classification	type specimens	grouping	classification
Quantitative	Numerical/molecular	Phenetics,	Precise	DNA-based
Methods	classification	cladistics,	phylogenetic	microbial
		barcoding	resolution	taxonomy

2. Classical Methods of Taxonomy

Classical taxonomy relies on observable characteristics, such morphology, as anatomy, and behavior, to classify descriptive organisms, using and comparative approaches established by pioneers like Linnaeus.

2.1 Mechanism

- Overview:
 - Classifies ~10⁷ species across plants, animals, and microorganisms.
 - Example: Rosa indica (rose, plant, ~10⁶ specimens).

• Molecular Basis:

- Morphological Traits: External and internal structures (~10³ traits/species).
 - Plants: Leaf shape, flower symmetry (~10² traits, e.g., Rosa indica petals).
 - Animals: Skeletal structure, fur pattern (~10² traits, e.g., Panthera leo mane).
 - Microorganisms: Cell shape, staining (~10¹ traits, e.g., Bacillus subtilis rods).
- Anatomical Features: Internal organs (~10² features).
 - Example: Chordate notochord (~10⁴ species).
- Taxonomic Keys: Dichotomous guides for identification (~10³ keys).
 - Example: Key for Rosaceae → Rosa indica (~10² steps).
- Tools:
 - **Type Specimens**: Reference for species (~10³ specimens/museum).
 - Example: Holotype of Homo sapiens (~10¹ museums).
 - Monographs: Detailed species descriptions (~10² pages/species).
 - Example: Flora of India (~10⁴ species).

- Regulation:
 - HOX Genes: Encode morphological traits (~10³ transcripts/cell).
 - **Epigenetics**: H3K27me3 silences non-taxonomic genes (~80% loci).
- Efficiency:
 - ~10⁷ species classified.
 - ~90% classification accuracy.
- Energetics:
 - Trait observation: Δ G ≈ -20 kJ/mol.
 - Key construction: $\Delta G \approx -30$ kJ/mol.

2.2 Classical Methods by Group

- Plants:
 - Criteria: Leaf venation, flower structure (~10² traits).
 - Example: Monocots (parallel veins) vs. Dicots (net veins, ~10⁵ species).
 - System: APG IV for angiosperms (~10⁴ families).
 - **Example**: Rosaceae (~10³ genera).
- Animals:
 - Criteria: Body symmetry, appendages (~10² traits).
 - Example: Arthropoda (exoskeleton, ~10⁶ species).
 - System: Linnaean hierarchy (~10⁴ orders).
 - **Example**: Mammalia (~10³ genera).
- Microorganisms:
 - Criteria: Cell morphology, Gram staining (~10¹ traits).
 - Example: Streptococcus (chains, Gram-positive, ~10⁴ species).
 - \circ **System**: Bergey's Manual (~10³ genera).
 - **Example**: Bacillus (~10² species).
- Efficiency: ~90% predictive accuracy.
- 2.3 Biological Applications
- **Classification**: Organizes ~10⁷ species.
- Conservation: Identifies taxa (~10⁵ endangered).
- **Therapeutics**: Pathogen taxonomy (~80% efficacy).
- **Biotechnology**: Museum-based biodiversity studies.