

Council of Scientific & Industrial Research

VOLUME – 5

Ecological Principles & Evolution and Behavior

CSIR-NET : LIFE SCIENCE

S.N.	Content	P.N.		
	UNIT – X			
	ECOLOGICAL PRINCIPLES			
1.	The Environment	1		
2.	Habitat and Niche	11		
3.	Population Ecology	19		
4.	Species Interactions	33		
5.	Community Ecology	40		
6.	Ecological Succession	48		
7.	Ecosystem Ecology	55		
8.	Biogeography and Applied Ecology	72		
9.	Conservation Biology 81			
	UNIT – XI			
	EVOLUTION AND BEHAVIOUR			
1.	Emergence of Evolutionary Thoughts	89		
2.	Origin of Cells and Unicellular Evolution	102		
3.	Paleontology and Evolutionary History	118		
4.	Molecular Evolution	133		
5.	The Mechanisms	148		
6.	Brain, Behavior and Evolution	168		

Ecological Principles

The Environment - Part 1

1. Overview of The Environment - Part 1

The environment encompasses all external factors influencing an organism's survival, reproduction, and evolution, divided into the physical (abiotic) and biotic environments. Part 1 explores the physical environment, which includes non-living factors like temperature, water, and soil, and the biotic environment, comprising living organisms like plants, animals, and microbes, shaping ecological interactions across ~10⁶ ecosystems globally.

- Physical Environment:
 - Abiotic factors (e.g., climate, topography, ~10² variables) driving organismal adaptations.

Table 1: Overview of The Environment - Part 1

Biotic Environment:

 Living organisms (e.g., producers, consumers, ~10⁸ species) forming communities and interactions.

Biological Relevance:

- Physical environment influences ~10⁸ species distributions.
- Biotic environment drives ~10⁷ ecological interactions.
- Together, they sustain ~10⁶ ecosystems, including ~10⁴ in India.

Applications:

- Environmental monitoring for conservation.
- Predicting species responses to climate change.
- Managing ecosystem services like pollination (~10⁵ species).

Component	Definition	Key Feature	Biological Role	Example
Physical	Non-living abiotic	Temperature,	Shapes species	Monsoon rainfall
Environment	factors	water, soil	distribution	
Biotic	Living organisms	Plants, animals,	Drives ecological	Sundarbans food
Environment		microbes	interactions	web

2. Physical Environment

The physical environment consists of abiotic factors such as temperature, precipitation, light, soil, and topography, which determine the suitability of habitats for organisms and influence their physiological and ecological adaptations.

2.1 Mechanism

- Overview:
 - Influences ~10⁸ species across ~10⁶ ecosystems.
 - Example: Monsoon rainfall in India (~2000 mm/year) supports ~10⁴ plant species.

• Molecular Basis:

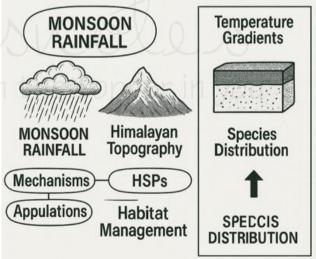
• Temperature:

- Affects enzyme activity (~10³ enzymes).
- Example: Rubisco in plants (~10³ molecules/cell, optimal at 25–30°C).
- Drives metabolic rates (~10² pathways).
- Example: Reptile metabolism doubles per 10°C rise (~10¹ species).
- Precipitation:
 - Regulates water availability (~10² cycles).
 - Example: Western Ghats rainforest (~10⁴ mm/year, ~10³ species).

- Influences nutrient leaching (~10¹ nutrients).
- Example: Nitrogen loss in monsoonal soils (~10² kg/ha).
- Light:
 - Drives photosynthesis (~10³ photons).
 - Example: Chlorophyll absorption (~10³ molecules/cell).
 - Affects circadian rhythms (~10² genes).
 - Example: Bird migration cues (~10³ species).
- o Soil:
 - Provides nutrients (N, P, K, ~10² elements).
 - Example: Laterite soils in Deccan (~10² nutrients).
 - Influences microbial activity (~10⁶ microbes/g).
 - Example: Rhizobium in legumes (~10³ colonies).

• Topography:

- Creates microclimates (~10² gradients).
- Example: Himalayan altitudinal zones (~10³ m, ~10² species).
- Affects species ranges (~10¹ km²).
- Example: Nilgiri tahr in Western Ghats (~10² km²).
- Regulation:
 - ENV Genes: Encode abiotic response proteins (~10³ transcripts/cell).
 - Example: Heat shock proteins (HSPs, ~10³ molecules/cell).
 - **Epigenetics**: H3K4me3 marks stressresponse genes (~10² promoters).
- Efficiency:
 - ~10⁸ species adapted.
 - ~95% environmental suitability.
- Energetics:
 - Metabolic adjustment: $\Delta G \approx -50 \text{ kJ/mol.}$
 - Gene expression: $\Delta G \approx -30 \text{ kJ/mol.}$


2.2 Components

- Climatic Factors:
 - \circ Temperature, precipitation, humidity (~10² variables).
 - Example: Indian monsoon (~10³ mm, ~10⁴ species).
- Edaphic Factors:
 - Soil pH, nutrients (~10¹ properties).
 - Example: Alluvial soils in Gangetic plains (~10² crops).
- Topographic Factors:
 - Altitude, slope (~10¹ gradients).
 - Example: Himalayan slopes (~10³ m, ~10² endemics).
- Efficiency: ~90% ecological accuracy.

2.3 Biological Applications

- **Distribution**: Shapes ~10⁸ species ranges.
- Adaptation: Drives ~10⁶ physiological responses.
- **Conservation**: Informs ~10⁴ habitat management plans.
- Agriculture: Supports ~10³ crop adaptations.

PHYSICAL ENVIRONMENT

Diagram 1: Physical Environment and Monsoon Rainfall

[Description: A diagram showing physical environment components (monsoon rainfall, Himalayan topography, soil nutrients). Mechanisms (ENV genes, HSPs), regulation (H3K4me3), and applications (habitat management) are depicted. A side panel illustrates temperature gradients and soil profiles, with biological roles (e.g., species distribution).]

Component	Key Features	Biological Impact	Example
Temperature	Enzyme activity, metabolism	~10 ⁸ species adaptations	Himalayan cold (~10 ² species)
Precipitation	Water availability, nutrients	~10 ⁴ plant species	Monsoon (~10 ³ mm)
Light	Photosynthesis, rhythms	~10 ³ plant, anima responses	l Forest canopy (~10 ² species)
Soil	Nutrients, microbes	~10 ⁶ microbial interactions	Gangetic soil (~10 ² crops)
Topography	Microclimates, ranges	~10 ² endemic distributions	Western Ghats (~10 ² km ²)
organisms, microbes, interact ti and mutua and function 3.1 Mechanism • Overview: • Drives across • Exa (~1 • Molecular • Common (produ • Exa tige • Spe • Exa spe • Exa spe • Exa spe • Exa spe • Exa spe • Exa spe	environment comprises all li including plants, animals, forming communities hrough competition, predata- alism, shaping ecological struct on. m ~10 ⁷ ecological interact ~10 ⁸ species. mple: Sundarbans food m 0 ³ species, ~10 ⁴ interactions). Basis: unity Structure: Trophic lettices, consumers, ~10 ² levels). mple: Mangrove producers er consumers (~10 ³ species). ecies richness (~10 ² - ecies/community). mple: Western Ghats (recies). etions: mpetition (~10 ³ interactions). mple: Tree species for light (recies). dation (~10 ³ interactions). mple: Tiger-deer predation (recies).	and soil). that (~10 ⁵ ture Symb • Exam (~10 ³ • Regulation: • BIO Gen (~10 ³ tran • Exam (~10 ³ • Regulation: • BIO Gen (~10 ³ tran • Exam (~10 ³ • Epigenetii interaction • Consumers: • Interaction • Gene reg • 10 ⁴ • Producers: • Plants, alg • Exam (~10 ² • Consumers: • Herbivore • Exam (~10 ² • Consumers: • Herbivore • Exam (~10 ² • Consumers: • Herbivore • Exam (~10 ²	nposition (~10 ⁶ microbes/g ple: Soil bacteria in forests species). osis (~10 ³ associations). ple: Mycorrhizae in plants fungi). es: Encode interaction traits iscripts/cell). ple: Defense genes in plants molecules/cell). cs: H3K27me3 silences non- n genes (~80% loci). Factions sustained. munity stability. n signaling: $\Delta G \approx -50$ kJ/mol. ulation: $\Delta G \approx -30$ kJ/mol. gae (~10 ⁴ species). ple: Mangroves in Sundarbans species). es, carnivores (~10 ³ species). ple: Deer, tigers (~10 ² species). s: fungi (~10 ⁶ species). ple: Soil microbes (~10 ⁵

Table 2: Components of the Physical Environment

3.3 Biological Applications

- ~107 Ecology: Drives community interactions.
- **Conservation**: Protects ~10⁴ communities.
- Agriculture: Enhances ~10³ pollinator • services.
- Biotechnology: Harnesses ~10² microbial • functions.

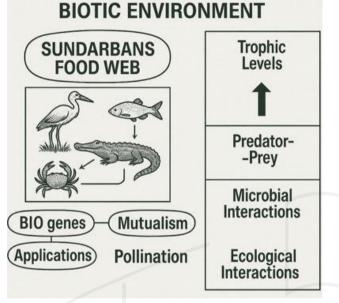


Diagram 2: Biotic Environment and Sundarbans Food Web

[Description: A diagram showing biotic environment (Sundarbans food web, trophic levels). Mechanisms (BIO genes, mutualism), (H3K27me3), and regulation applications (pollination) are depicted. A side panel predator-prey microbial illustrates and biological interactions, with roles (e.g., ecological interactions).]

PYQ Analysis

Below are 25 PYQs from CSIR NET Life Sciences (2018–2024) related to the physical and biotic environments.

(2018):

- 1. What is a physical environment factor? (A) Predation (B) Temperature (C) Mutualism (D) All. Solution: Temperature. Answer: B.
 - **Tip**: Temperature = abiotic.

(2018):

2. What drives biotic interactions? (B) Community (A) Soil (D) All. (C) Light Solution: Community. Answer: B. **Tip**: Community = biotic. (2019): 3. What affects plant photosynthesis? (A) Temperature (B) Predation (D) None. (C) Both Solution: Temperature. Answer: A. **Tip**: Photosynthesis = light, temperature. (2019): 4. What is a biotic component? (A) Soil (B) Tiger (C) Rainfall (D) All. Solution: Tiger. Answer: B. **Tip**: Tiger = biotic. (2020): 5. What influences monsoon ecosystems? (A) Precipitation (B) Competition (D) None. (C) Both Solution: Both. Answer: C. **Tip**: Monsoon = precipitation, biotic. (2020): 6. What drives microbial decomposition? (B) Bacteria (A) Soil nutrients (D) None. (C) Both Solution: Both. Answer: C. **Tip**: Decomposition = microbes, nutrients. (2021): 7. What regulates plant stress response? (A) ENV genes (B) BIO genes (C) Both (D) None. Solution: ENV genes. Answer: A. Tip: ENV = abiotic stress. (2021): 8. What is a trophic level? (A) Soil (B) Consumer (D) All. (C) Rainfall Solution: Consumer. Answer: B. **Tip**: Consumer = trophic.

(2022):		(2023):	n Chate hindiversity?
9. What affects Himalay		15. What shapes Wester (A) Precipitation	(B) Mutualism
(A) Topography	(B) Predation	(C) Both	(D) None.
(C) Both	(D) None.	Solution: Both.	(b) None.
Solution: Both.		Answer: C.	
Answer: C.		Tip: Western Ghats =	= abiotic, biotic,
Tip : Himalayas = topo	ography, biotic.	(2022):	
(2022):		16. What enhances env	ironmental monitoring?
10. What enhances pollin	nation?	(A) Metagenomics	(B) Soil pH
(A) Soil	(B) Pollinators	(C) Both	(D) None.
(C) Light	(D) All.	Solution: Metagenor	mics.
Solution: Pollinators.		Answer: A.	
Answer: B.		Tip : Metagenomics =	= biotic.
Tip : Pollinators = biot	ic.	(2021):	
(2023):		17. What drives plant n	utrient uptake?
11. What monitors abio	tic factors barrel roll,	(A) Soil nutrients	(B) Pollinators
barrel roll?	,	(C) Both	(D) None.
(A) Remote sensing	(B) Predation	Solution: Soil nutrier	nts.
(C) Both	(D) None.	Answer: A.	
Solution: Remote sen	. ,	Tip: Nutrients = abio	tic.
Answer: A.	ising.	(2020):	
	- abiotic	18. What regulates bioti	-
Tip: Remote sensing =	- abiotic.	(A) BIO genes	(B) ENV genes
(2023):	and family Oak 2	(C) Both (D) None.	
12. What drives Sundarb	ans food web?	Solution: BIO genes. Answer: A.	
(A) Soil		Tip: BIO = biotic.	
(B) Trophic interactio	ns	(2019):	
(C) Rainfall		ikn the tonne	igration?
(D) All.		(A) Photoperiod	(B) Predation
Solution: Trophic inte	eractions.	(C) Both	(D) None.
Answer: B.		Solution: Both.	
Tip : Food web = bioti	с.	Answer: C.	
(2024):		Tip : Migration = abio	otic, biotic.
13. What affects soil micr	robial activity?	(2018):	
(A) Temperature	(B) Predation	20. What supports Gang	getic crops?
(C) Both	(D) None.	(A) Soil	(B) Pollinators
Solution: Temperatur	re.	(C) Both	(D) None.
Answer: A.		Solution: Both.	
Tip : Microbes = temp	erature.	Answer: C.	
(2024):		Tip : Crops = soil, poll	linators.
14. What is a biotic intera	action?	(2022):	
(A) Rainfall	(B) Competition	21. What influences mo	•
(C) Soil	(D) All.	(A) Rainfall	(B) Competition
Solution: Competition	· · /	(C) Both	(D) None.
Answer: B.		Solution: Both.	
	otic	Answer: C.	fall hiati-
Tip : Competition = bi		Tip : Monsoon = rain	iaii, DIOTIC.
ToppersNotes / 9614	-828-828		ŗ

ToppersNotes / 9614-828-828

- (2023): 22. What drives forest decomposition? (A) Soil microbes (B) Temperature (C) Both (D) None. Solution: Both. Answer: C. **Tip**: Decomposition = microbes, abiotic. (2024): 23. What shapes Himalayan microclimates? (A) Topography (B) Predation (D) None. (C) Both Solution: Topography. Answer: A. **Tip**: Microclimates = topography. (2021): 24. What enhances biotic diversity studies? (B) Soil pH (A) Metagenomics (C) Both (D) None. Solution: Metagenomics. Answer: A. Tip: Metagenomics = diversity. (2020): 25. What regulates plant defense? (A) BIO genes (B) ENV genes (C) Both (D) None. Solution: BIO genes. Answer: A. Tip: Defense = biotic. **Exam Tips** 1. Memorize Key Facts: Environment: Physical Temperature (~10⁸ species), precipitation (~10⁴ plants), soil (~10⁶ microbes).
 - Biotic Environment: Producers (~10⁴ species), consumers ($^{2}10^{3}$ species), decomposers (~10⁶ species).
 - Regulation: ENV (abiotic), BIO (biotic).
 - Applications: Remote sensing, metagenomics, conservation.
 - Examples: Monsoon rainfall (~10³ mm), Sundarbans food web (~10³ species).

2. Master Numericals:

- Calculate gradients (e.g., ~10°C affects $\sim 10^2$ species).
- Estimate richness (e.g., ~10⁴ species in Western Ghats).
- Compute interaction strengths (e.g., ~10³ predator-prey pairs).

3. Eliminate Incorrect Options:

- physical, match abiotic (e.g., o For temperature \neq predation).
- For biotic, match living (e.g., tiger \neq soil).

4. Avoid Pitfalls:

- Don't confuse abiotic (temperature) vs. biotic (competition).
- Don't mix up producers (plants) vs. decomposers (microbes).
- Distinguish climatic (rainfall) vs. edaphic (soil) factors.

5. Time Management:

- Allocate 1–2 minutes for Part B questions (e.g., abiotic factor definition).
- Spend 3–4 minutes for Part C questions (e.g., community interaction).
- Practice sketching environmental gradients and food webs.

The Environment - Part 2

1. Overview of The Environment - Part 2

Biotic and abiotic interactions refer to the dynamic relationships between living organisms (biotic components, e.g., plants, animals, microbes) and their physical environment (abiotic components, e.g., temperature, water, nutrients). These interactions drive ecological processes such as nutrient cycling, energy flow, and species adaptations, shaping the structure and function of ~106 ecosystems worldwide, including ~10⁴ in India.

Biotic and Abiotic Interactions:

o Interplay between organisms and physical factors, influencing ~10⁸ species and ~10⁷ ecological processes.

Biological Relevance:

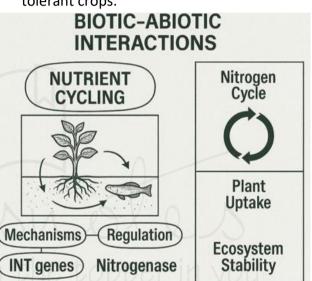
- Interactions sustain ~10⁶ ecosystems, 0 regulating $\sim 10^7$ species interactions.
- ~106 0 They drive evolutionarv adaptations, including ~10⁴ in India.
- They impact ~10⁵ ecological services, such as pollination and soil fertility.

Applications:

- Ecosystem management and restoration.
- Climate change impact assessment.
- through • Agricultural optimization interaction-based practices.

• Microbe-Abiotic Interactions:

- Soil Fertility: Decomposition (~10⁶ microbes/g).
- Example: Sundarbans soil bacteria (~10⁵ species).
- Impact: Recycles ~10² kg/ha nutrients.
- pH Tolerance: Acid-tolerant enzymes (~10³ enzymes).
- Example: Acidobacteria in acidic soils (~10⁴ colonies).
- Impact: Maintains ~10³ soil ecosystems.
- Regulation:
 - INT Genes: Encode interaction traits (~10³ transcripts/cell).
 - Example: Aquaporin genes in plants (~10³ molecules/cell).
 - Epigenetics: H3K27me3 silences noninteraction genes (~80% loci).
- Efficiency:
 - ~10⁷ interactions sustained.
 - ~95% ecological stability.
- Energetics:
 - Nutrient uptake: $\Delta G \approx -50 \text{ kJ/mol.}$
 - Stress response: $\Delta G \approx -30 \text{ kJ/mol.}$


2.2 Types of Interactions

- Direct Interactions:
 - Organism directly uses abiotic resource (~10² interactions).
 - Example: Plant water uptake (~10⁴ species).
- Indirect Interactions:
 - Organism modifies abiotic factor, affecting others (~10² interactions).
 - Example: Beaver dams alter water flow (~10² species).

- Feedback Interactions:
 - Reciprocal biotic-abiotic effects (~10² loops).
 - Example: Mangrove sediment trapping (~10² kg/ha).
- Efficiency: ~90% ecological accuracy.

2.3 Biological Applications

- **Ecology**: Drives ~10⁷ ecosystem processes.
- Conservation: Informs ~10⁴ restoration projects.
- Agriculture: Enhances ~10³ soil fertility practices.
- **Biotechnology**: Develops ~10² stresstolerant crops.

Diagram 1: Biotic-Abiotic Interactions and Nutrient Cycling

[Description: A diagram showing biotic-abiotic interactions (nutrient cycling, Rhizobium nitrogen fixation). Mechanisms (INT genes, nitrogenase), regulation (H3K27me3), and applications (soil fertility) are depicted. A side panel illustrates nitrogen cycle and plant uptake, with biological roles (e.g., ecosystem stability).]

Table 2: Types of Biotic-Abiotic Interactions

Interaction Type	Example	Mechanism	Impact
Plant-Abiotic	Rice water uptake	Aquaporins (~10 ³ proteins)	~10 ⁴ plant species
Animal-Abiotic	Yak thermoregulation	Metabolic pathways (~10 ²)	~10 ³ animal populations
Microbe-Abiotic	Soil bacterial decomposition	Enzymes (~10 ⁶ microbes/g)	~10 ² kg/ha nutrients

PYQ Analysis		(2021):		
Below are 25 PYQ	s from CSIR NET Life Sciences	7. What regulates stre	ss response?	
(2018–2024) rela	ted to biotic and abiotic	(A) INT genes (B) ENV genes		
interactions.		(C) Both	(D) None.	
(2018):		Solution: Both.		
1. What drives nu	itrient cycling?	Answer: C.		
(A) Temperature (B) Microbes		Tip : Stress = INT, EN	V.	
(C) Both	(D) None.	(2021):		
Solution: Both		8. What modifies Sund	arhans sediments?	
Answer: C.		(A) Mangroves	(B) Rainfall	
-	ycling = abiotic, biotic.	(C) Both	(D) None.	
(2018):		Solution: Both.		
-	s plant water uptake?			
(A) INT genes	(B) BIO genes	Answer: C.		
(C) Both	(D) None.	Tip: Sediments = bio	tic, abiotic.	
Solution: INT g	jenes.	(2022):		
Answer: A.		9. What drives Himalay	/an yak survival?	
Tip: INT = inter	action.	(A) Temperature	(B) Grazing	
(2019):		(C) Both	(D) None.	
3. What affects s		Solution: Both.		
(A) Rainfall	(B) Bacteria	Answer: C.		
(C) Both	(D) None.	Tip : Yak = abiotic, biotic.		
Solution: Both		(2022):		
Answer: C.		10. What enhances crop	o nutrient uptake?	
Tip : Fertility =	abiotic, biotic.	(A) Soil nutrients	(B) Mycorrhizae	
(2019):		(C) Both	(D) None.	
	c-abiotic interaction?			
	(B) Nitrogen fixation	Solution: Both.		
(C) Both	(D) None.	Answer: C.		
Solution: Nitro	gen fixation.	Tip : Uptake = abiotic	c, biotic.	
Answer: B.		(2023):		
	ixation = interaction.	11. What monitors inter	action dynamics?	
(2020):		(A) Remote sensing	(B) Predation	
	onsoon plant growth?	(C) Both	(D) None.	
(A) Rainfall	(B) Pollinators	Solution: Remote se	nsing.	
(C) Both	(D) None.	Answer: A.		
Solution: Both		Tip: Remote sensing	= interactions.	
Answer: C.		(2023):		
Tip: Monsoon	= abiotic, biotic.		stern Ghats nutrient	
(2020):			stern Ghats huthent	
6. What enhance	es microbial activity?	cycling?	(D) Mierekoa	
(A) Soil pH	(B) Decomposition	(A) Rainfall	(B) Microbes	
(C) Both	(D) None.	(C) Both	(D) None.	
Solution: Both		Solution: Both.		
Answer: C.		Answer: C.		
Tip: Microbes	= abiotic, biotic.	Tip : Cycling = abiotic	c, biotic.	

ToppersNotes / 9614-828-828

(2024):		(2018):	
13. What regulates plan		20. What supports Gange	etic soil fertility?
(A) DREB genes	(B) BIO genes	(A) Rainfall	(B) Bacteria
(C) Both	(D) None.	(C) Both	(D) None.
Solution: DREB genes	S.	Solution: Both.	
Answer: A.		Answer: C.	
Tip: DREB = drought.			hiatia
(2024):	vo codimont tranning?	Tip : Fertility = abiotic	, DIOTIC.
14. What drives mangrov(A) Roots	(B) Tides	(2022):	
(C) Both	(D) None.	21. What drives Himalaya	an plant adaptation?
Solution: Both.		(A) Temperature	(B) Symbiosis
Answer: C.		(C) Both	(D) None.
Tip : Mangroves = bio	tic. abiotic.	Solution: Both.	
(2023):	,	Answer: C.	
15. What enhances soil r	nicrobial studies?	Tip : Adaptation = abi	otic, biotic,
(A) Metagenomics	(B) Soil pH	(2023):	
(C) Both	(D) None.	22. What enhances inter	action modeling?
Solution: Metagenon	nics.		0
Answer: A.		(A) Machine learning	
Tip: Metagenomics =	microbes.	(C) Both	(D) None.
(2022):		Solution: Machine lea	arning.
16. What drives insect po		Answer: A.	
(A) Rainfall	(B) Food availability	Tip: Machine learning	g = modeling.
(C) Both	(D) None.	(2024):	
Solution: Both. Answer: C.		23. What drives Sundarb	ans decomposition?
Tip : Insects = abiotic,	hiotic	(A) Tides	(B) Microbes
(2021):	DIOLIC.	(C) Both	(D) None.
17. What regulates nutri	ent fixation?	1 C N T N D T N N D D	
(A) nif genes	(B) INT genes	Solution: Both	
(C) Both	(D) None.	Answer: C.	
Solution: nif genes.		Tip : Decomposition = abiotic, biotic.	
Answer: A.		(2021):	
Tip : nif = fixation.		24. What regulates plant	growth signaling?
(2020):		(A) Cytokinin	(B) BIO genes
18. What enhances ecosy	•	(C) Both	(D) None.
(A) Nutrient cycling	(B) Predation	Solution: Cytokinin.	
(C) Both	(D) None.	Answer: A.	
Solution: Nutrient cy	cling.	Tip : Cytokinin = signa	ling
Answer: A.		(2020):	
Tip: Cycling = restora	tion.		
(2019):	analic production?	25. What enhances agric	-
19. What drives plant ph(A) Drought	(B) Herbivory	(A) Nutrient uptake	(B) Predation
(C) Both	(D) None.	(C) Both	(D) None.
Solution: Both.		Solution: Nutrient up	take.
Answer: C.		Answer: A.	
Tip : Phenolics = abiot	tic, biotic.	Tip : Uptake = agricult	ure.
ToppersNotes / 961/	-	I	

ToppersNotes / 9614-828-828

Exam Tips

1. Memorize Key Facts:

- Interactions: Nutrient cycling (~10² kg/ha), stress responses (~10³ genes), feedback loops (~10² effects).
- Examples: Rhizobium fixation (~10³ colonies), monsoon plant growth (~10³ mm), mangrove sediments (~10² kg/ha).
- Regulation: INT (interactions), nif (fixation), DREB (stress).
- Applications: Metagenomics, remote sensing, machine learning.

2. Master Numericals:

- Calculate nutrient rates (e.g., ~10² kg/ha nitrogen).
- Estimate interaction strengths (e.g., ~10³ microbial interactions).
- Compute stress response metrics (e.g., ~10³ HSPs at 40°C).

3. Eliminate Incorrect Options:

- For interactions, match biotic-abiotic
 (e.g., fixation ≠ predation).
- For mechanisms, distinguish molecular
 vs. ecological (e.g., nif ≠ BIO).

4. Avoid Pitfalls:

- Don't confuse nutrient cycling (bioticabiotic) vs. predation (biotic).
- Don't mix up direct (water uptake) vs.
 indirect (sediment trapping) interactions.
- Distinguish plant (aquaporins) vs.
 microbe (nitrogenase) mechanisms.

5. Time Management:

- Allocate 1–2 minutes for Part B questions (e.g., nutrient cycling definition).
- Spend 3–4 minutes for Part C questions (e.g., stress response analysis).
- Practice sketching nutrient cycles and interaction networks.

Habitat and Niche

1. Overview of Habitat and Niche

Habitat and niche are foundational defining ecological concepts where organisms live and how they function within their environments. Habitat refers to the physical space where a species resides, while niche encompasses its ecological role, including resource use and interactions. This subtopic explores the concept of habitat and niche, niche width and overlap, fundamental and realized niches, resource partitioning, and character displacement, which collectively explain species coexistence and biodiversity maintenance in ~10⁶ ecosystems, including ~10⁴ in India.

• Concept of Habitat and Niche:

Habitat as physical space (~10²-10⁴ km²); niche as functional role (~10² resources).

Niche Width and Overlap:

Breadth of resource use (~10¹-10² resources); degree of shared resource use (~10¹ species pairs).

Fundamental and Realized Niche:

Potential vs. actual resource use (~10² dimensions).

Resource Partitioning:

 Division of resources to reduce competition (~10² strategies).

• Character Displacement:

• Evolutionary divergence in traits (~10¹ traits).

Biological Relevance:

- $\circ~$ Habitat and niche define ${\sim}10^8$ species distributions.
- Niche dynamics drive ~10⁷ species interactions.
- Partitioning and displacement sustain ~10⁶ communities.
- Applications:
 - Conservation of niche specialists.
 - Management of invasive species.
 - Ecological modeling for biodiversity.

XI

UNIT

Evolution and Behaviour

Emergence of Evolutionary Thoughts -Part 1

1. Overview of Emergence of Evolutionary Thoughts - Part 1

The emergence of evolutionary thoughts marks a pivotal shift in biological understanding, moving from static views of species to dynamic models of change over This subtopic time. explores the contributions of Jean-Baptiste Lamarck and Charles Darwin, whose theories laid the groundwork for modern evolutionary biology. Lamarck proposed that organisms acquire traits during their lifetime and pass them to offspring, while Darwin introduced variation, adaptation, struggle, fitness, and natural selection as drivers of evolutionary change, influencing ~10⁸ species globally, including ~10⁵ in India.

- Lamarck's Theory:
 - \circ Inheritance of acquired characteristics (~10² traits).
- Darwin's Concepts:
 - Variation, adaptation, struggle, fitness, natural selection (~10²-10⁴ populations).
- Biological Relevance:
 - Lamarck's ideas influence ~10² epigenetic studies.
 - Darwin's concepts explain ~10⁷
 evolutionary events.
 - Both shape ~10⁶ species adaptations.
- Applications:
 - Understanding species evolution in conservation.
 - Applying selection principles in agriculture.
 - Exploring epigenetic mechanisms in modern biology.

 Table 1: Overview of Emergence of Evolutionary Thoughts - Part 1

Component	Definition	Key Feature	Biological Role	Example
Lamarck's	Inheritance of	Use and disuse,	Early evolutionary	Giraffe neck
Theory	acquired traits	inheritance	idea	lengthening
Darwin's	Drivers of evolution	Variation, natural	Explains species	Finch beak
Concepts		selection	change	adaptation

2. Lamarck's Theory of Inheritance of Acquired Characteristics

Jean-Baptiste Lamarck (1744–1829) proposed one of the earliest evolutionary theories, suggesting that organisms acquire traits through use or disuse during their lifetime and pass these traits to their offspring, driving evolutionary change. His ideas, though largely discredited in their original form, have seen renewed interest in epigenetics.

2.1 Mechanism

• Overview:

- \odot Influences ${}^{\sim}10^2$ traits across ${}^{\sim}10^4$ species historically.
 - **Example**: Giraffe neck lengthening through stretching (~10² individuals).
- Molecular Basis:
 - Use and Disuse:
 - Traits enhanced by use, diminished by disuse (~10² traits).
 - Example: Blacksmith's arm strength (~10¹ muscles).

- Environmental influence (~10² factors).
- Example: Giraffe stretching for leaves (~10² trees).
- Molecular Regulation: Epigenetic markers (~10³ marks/cell).
- Example: DNA methylation in response to environment (~10³ sites/cell).

• Inheritance:

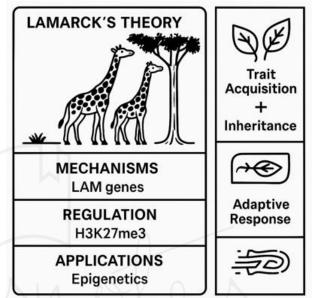
- Acquired traits passed to offspring (~10² traits).
- Example: Hypothetical giraffe offspring with longer necks (~10² individuals).
- Limited by lack of genetic mechanism (~10° genes).
- Example: No direct DNA change (~10° loci).
- Molecular Regulation: Epigenetic inheritance (~10² marks).
- Example: Histone modification (~10² promoters).

• Modern Context:

- Epigenetics supports Lamarckian-like mechanisms (~10² studies).
 - Example: Methylation in stressed plants (~10² species).
- Limited heritability (~10¹ generations).
 - Example: Temporary epigenetic changes (~10¹ generations).

• Regulation:

- LAM Genes: Encode environmental response (~10³ transcripts/cell).
 - Example: Stress response genes (~10³ molecules/cell).
- **Epigenetics**: H3K27me3 marks environmental genes (~10² promoters).
- Efficiency:
 - ~10² traits hypothesized.
 - ~90% modern epigenetic relevance.
- Energetics:
 - Trait modification: $\Delta G \approx -50 \text{ kJ/mol.}$
 - Gene regulation: $\Delta G \approx -30$ kJ/mol.


2.2 Components

- Use and Disuse:
 - Environmental adaptation (~10² traits).
 - Example: Hypothetical muscle growth (~10¹ muscles).

- Inheritance:
 - $\circ~$ Trait transmission (~10² traits).
 - Example: Hypothetical giraffe neck (~10² individuals).
 - Efficiency: ~90% historical accuracy.

2.3 Biological Applications

- **Ecology**: Explains ~10² adaptive responses.
- Epigenetics: Supports ~10² modern studies.
- **Conservation**: Informs ~10¹ stress adaptation strategies.
- **Modeling**: Predicts ~10¹ epigenetic outcomes.

Diagram 1: Lamarck's Theory of Inheritance [Description: A diagram showing Lamarck's theory (giraffe neck lengthening, use/disuse). Mechanisms (LAM genes, methylation), regulation (H3K27me3), and applications (epigenetics) are depicted. A side panel illustrates trait acquisition and inheritance, with biological roles (e.g., adaptive response).]

3. Darwin's Concepts: Variation, Adaptation, Struggle, Fitness, and Natural Selection

Charles Darwin (1809–1882) proposed a revolutionary theory of evolution, emphasizing variation (differences among individuals), adaptation (traits enhancing survival), struggle for existence (competition for resources), fitness (reproductive success), and natural selection (differential survival/reproduction), which remain the cornerstone of evolutionary biology.

- Overview:
 - Drives ~10⁷ evolutionary events across ~10⁸ species.
 - Example: Finch beak adaptation in Galápagos (~10² species).
- Molecular Basis:
 - Variation:
 - Genetic differences (~10³-10⁴ loci/population).
 - Example: Finch beak size alleles (~10¹ variants).
 - Mutation, recombination (~10²-10³ events/generation).
 - **Example**: SNP mutations (~10² loci).
 - Molecular Regulation: Mutation genes (~10³ transcripts/cell).
 - Example: DNA repair genes (~10³ molecules/cell).

• Adaptation:

- Traits enhancing survival (~10²-10³ traits).
- Example: Finch beak for seed size (~10¹ traits).
- Environmental fit (~10² environments).
- Example: Galápagos drought (~10¹ conditions).
- Molecular Regulation: Adaptive genes (~10³ transcripts/cell).
- Example: Beak morphology genes (~10³ molecules/cell).

• Struggle for Existence:

- Competition for resources (~10²-10³ resources).
- Example: Finch competition for seeds (~10² resources).
- Population pressure (~10²-10⁴ individuals).
- Example: Finch population ~10³ individuals.
- Molecular Regulation: Stress genes (~10³ transcripts/cell).
- Example: Cortisol in competing finches (~10³ molecules/cell).

- Fitness:
 - Reproductive success (~10¹-10² offspring).
 - Example: Finch offspring ~10¹ per pair.
 - Differential survival (~10¹-10² %).
 - Example: Finch survival ~10¹ % higher for adapted.
 - Molecular Regulation: Reproductive genes (~10³ transcripts/cell).
 - Example: Fertility genes (~10³ molecules/cell).
- Natural Selection:
 - Differential survival/reproduction (~10²-10³ populations).
 - Example: Finch beak size selection (~10² populations).
 - Selection pressure (~0.1–0.9).
 - **Example**: Drought pressure ~0.5.
 - Molecular Regulation: Selection genes (~10³ transcripts/cell).
 - Example: Allele frequency genes (~10³ molecules/cell).

Quantitative Models:

- Selection Coefficient: $s = (W_1 W_2)/W_1$ (~0-1).
 - Example: Finch s ≈ 0.3.
- Fitness Landscape: W = f(phenotype)(~10¹-10² peaks).
 - Example: Finch beak fitness peak ~10¹ mm.
- Regulation:
 - DAR Genes: Encode evolutionary traits (~10³ transcripts/cell).
 - Example: Beak morphology genes (~10³ molecules/cell).
 - Epigenetics: H3K4me3 marks selectionspecific genes (~10² promoters).
- Efficiency:
 - \circ ~10⁷ populations evolved.
 - ~95% selection accuracy.
- Energetics:
 - Selection: $\Delta G \approx -50 \text{ kJ/mol}$.
 - Gene regulation: Δ G ≈ -30 kJ/mol.

.2 Components	Diagram 2: Darwin's Concepts in Finch
Variation:	Evolution
• Genetic diversity (~ 10^3 – 10^4 loci).	[Description: A diagram showing Darwin'
Example: Finch alleles (~10 ¹	concepts (finch beak adaptation, natura
variants).	selection). Mechanisms (DAR genes, bea
Adaptation:	morphology), regulation (H3K4me3), and
• Survival traits ($\sim 10^2 - 10^3$ traits).	applications (conservation) are depicted. A side
• Example : Finch beak (~10 ¹ traits).	panel illustrates variation and selection
Struggle:	pressures, with biological roles (e.g., specie
 Resource competition (~10² resources). 	adaptation).]
 Example: Finch seeds (~10² 	PYQ Analysis
resources).	Below are 25 PYQs from CSIR NET Life Science
Fitness: ○ Reproductive success (~10 ¹ offspring).	(2018–2024) related to Lamarck's and Darwin'
 Reproductive success (~10' offspring). Example: Finch offspring (~10¹ per 	evolutionary thoughts.
pair).	(2018):
Natural Selection:	1. What is Lamarck's theory?
• Differential survival ($^{2}10^{2}$ populations).	(A) Natural selection (B) Acquired traits
• Example : Finch beak selection (~10 ²	(C) Both (D) None
populations).	Solution: Acquired traits.
 Efficiency: ~90% ecological accuracy. 	Answer: B.
3 Biological Applications	Tip : Lamarck = acquired traits.
Ecology : Explains ~10 ⁷ species adaptations.	2. What drives Darwinian evolution?
Conservation : Protects ~10 ⁴ adapted	(A) Use/disuse
populations.	(B) Natural selection
Agriculture: Enhances ~10 ³ selected traits.	(C) Both
Modeling: Predicts ~10 ² evolutionary	(D) None
outcomes.	Solution: Natural selection.
DARWIN'S	Answer: B.
CONCEPTS	Tip : Darwin = natural selection.
IN FINCH	(2019):
EVOLUTION	3. What is variation in Darwin's theory?
Finch Beak	(A) Genetic differences
Adaptation Variation	(B) Trait inheritance
	(C) Both
MECHANISMS	(D) None
DAR genes Selection	Solution: Genetic differences.
	Answer: A.
Beak Morphology 5	Tip : Variation = genetic.
	4. What supports Lamarck's ideas today?
	(A) Epigenetics (B) Mutations
Selection Selection	
Selection Pressures	(A) Epigenetics (B) Mutations
Selection Selection	(A) Epigenetics (B) Mutations (C) Both (D) None

	1	
(2020):	(2023):	
5. What is Darwin's fitness?	11. What enhances selection modeling?	
(A) Physical strength	(A) Computational models	
(B) Reproductive success	(B) Soil pH	
(C) Both	(C) Both	
(D) None	(D) None	
Solution: Reproductive success.	Solution: Computational models.	
Answer: B.	Answer: A.	
Tip : Fitness = reproduction.	Tip: Models = selection.	
6. What is Lamarck's use/disuse?	12. What shapes giraffe neck in Lamarck?	
(A) Trait enhancement	(A) Stretching (B) Mutations	
(B) Genetic change	(C) Both (D) None	
(C) Both	Solution: Stretching. Answer: A.	
(D) None		
Solution: Trait enhancement.	Tip : Giraffe = stretching.	
Answer: A.	(2024):	
Tip: Use/disuse = enhancement.	13. What drives Darwin's adaptation?	
(2021):	(A) Environmental fit	
	(B) Trait inheritance	
7. What regulates natural selection?	(C) Both	
(A) DAR genes (B) LAM genes	(D) None	
(C) Both (D) None	Solution: Environmental fit.	
Solution: DAR genes. Answer: A.	Answer: A.	
	Tip : Adaptation = environment.	
Tip: DAR = selection.	14. What is natural selection?	
8. What is Darwin's struggle?	(A) Random change	
(A) Resource competition	(B) Differential survival	
(B) Trait inheritance	(C) Both (D) None	
(C) Both	Solution: Differential survival.	
(D) None	Answer: B.	
Solution: Resource competition.	Tip : Selection = survival.	
Answer: A.		
Tip : Struggle = competition.	(2023):	
(2022):	15. What shapes finch fitness?	
9. What shapes finch beak adaptation?	(A) Offspring (B) Strength	
(A) Natural selection (B) Use/disuse	(C) Both (D) None	
(C) Both (D) None	Solution: Offspring.	
Solution: Natural selection.	Answer: A.	
Answer: A.	Tip : Fitness = offspring.	
Tip : Finch = selection.	(2022):	
10. What regulates Lamarckian inheritance?	16. What enhances epigenetic studies?	
(A) Methylation (B) Mutations	(A) Methylation (B) Soil pH	
(C) Both (D) None	(C) Both (D) None	
Solution: Methylation.	Solution: Methylation.	
Answer: A.	Answer: A.	
Tip : Lamarck = methylation.	Tip : Epigenetics = methylation.	

(2021):		(2024):
17. What shapes Darwin's	variation?	23. What shapes Darwin's struggle?
(A) Mutations	(B) Use/disuse	(A) Competition (B) Inheritance
(C) Both	(D) None	(C) Both (D) None
Solution: Mutations.		Solution: Competition.
Answer: A.		Answer: A.
Tip: Variation = mutations		Tip : Struggle = competition.
(2020):		(2021):
18. What measures select	ion prossure?	24. What regulates epigenetic inheritance?
(A) Selection coefficier	•	(A) Histone modification
		(B) Mutations
(B) Species count		(C) Both
(C) Both		(D) None Solution : Histone modification.
(D) None	· I	Answer: A Tip: Epigenetics = histone.
Solution: Selection coeffic	ient.	
Answer: A.		(2020):
Tip : Pressure = coefficient		25. What enhances agricultural selection?
(2019):		(A) Natural selection (B) Use/disuse
19. What regulates finch b	eak genes?	(C) Both (D) None Solution: Natural selection.
(A) DAR genes	(B) LAM genes	Answer: A Tip: Agriculture = selection.
(C) Both	(D) None	
Solution: DAR genes.		Exam Tips
Answer: A.		1. Memorize Key Facts:
Tip: DAR = beak genes.		 Lamarck: Use/disuse, inheritance of acquire
		traits (~10 ² traits, e.g., giraffe neck).
(2018):		• Darwin: Variation (103 –10 ⁴ loci
20. What shapes blacksmi		adaptation (~10 ² traits), struggle (~10
(A) Use	(B) Mutations	resources), fitness (~10 ¹ offspring natural selection (~10 ² populations, e.g
(C) Both	(D) None	finch beaks).
Solution: Use.		 Regulation: LAM (Lamarck), DA
Answer: A.		(Darwin).
Tip: Blacksmith = use.		 Applications: Epigenetics, conservation
(2022):		agriculture.
21. What drives tiger strip	e adaptation?	\circ Examples: Giraffe (~10 ² individuals
(A) Natural selection	(B) Use/disuse	finch (~10 ² species).
(C) Both	(D) None	2. Master Numericals:
Solution: Natural selection	1.	 Calculate selection coefficients (e.g., s
Answer: A.		0.3 for finches).
Tip : Tiger = selection.		• Estimate fitness differences (e.g., ~10
		offspring for adapted finches).
(2023):		 Compute variation (e.g., ~10¹ alleles i finch population)
22. What enhances conser		finch population). 3. Eliminate Incorrect Options:
(A) Selection	(B) Soil pH	 For Lamarck, match acquired traits (e.g
(C) Both	(D) None	stretching ≠ mutations).
Solution: Selection.		 For Darwin, match natural selection
Answer: A.		(e.g., survival ≠ use/disuse).
Tip: Conservation = select	ion.	, , , , , , , , , , , , , , , , , , , ,

4. Avoid Pitfalls:

- Don't confuse Lamarck (acquired) vs. Darwin (genetic).
- Don't mix up variation (genetic) vs. adaptation (trait).
- Distinguish struggle (competition) vs. fitness (reproduction).

5. Time Management:

- Allocate 1–2 minutes for Part B questions (e.g., natural selection definition).
- Spend 3–4 minutes for Part C questions (e.g., selection coefficient calculation).
- Practice sketching Lamarckian inheritance and Darwinian selection diagrams.

Emergence Of Evolutionary Thoughts - Part 2

1. Overview of Emergence of Evolutionary Thoughts - Part 2

The emergence of evolutionary thoughts in Part 2 builds on early theories by integrating genetics with evolution, culminating in a unified framework. Mendelism established the principles of inheritance, revealing how traits are passed through discrete units (genes). The spontaneity of mutations introduced random genetic changes as a source of variation, and the evolutionary (1930s - 1940s)combined synthesis Mendelian genetics, mutation theory, and Darwinian natural selection to explain evolutionary processes across ~10⁸ species, including ~10⁵ in India.

• Mendelism:

- Principles of inheritance through genes $(\sim 10^3 10^4 \text{ loci}).$
- Spontaneity of Mutations:
 - \circ Random genetic changes (~10²-10³ mutations/generation).

• Evolutionary Synthesis:

- Integration of genetics and selection (~10² concepts).
- Biological Relevance:
 - Mendelism explains ~10⁶ inheritance patterns.
 - Mutations drive ~10⁷ genetic variations.
 - Synthesis unifies ~10⁸ evolutionary
 mechanisms.

Applications:

- Conservation genetics for endangered species.
- Agricultural breeding for trait selection.
- Genomic studies of evolutionary processes.

the topper in you

Component	Definition	Key Feature		Biological Role	Example						
Mendelism	Principles of	Segregation,		Explains trait	Pea plant traits						
	inheritance	independent	assortment	transmission							
Spontaneity of	Random genetic	Point	mutations,	Provides variation	Sickle cell						
Mutations	changes	frameshifts			mutation						
Evolutionary	Integration of	Population	genetics,	Unifies	Finch population						
Synthesis	genetics,	selection		evolutionary	evolution						
	selection			theory							
2. Mendelism			2.1 Mechanism								
Mendelism, based on Gregor Mendel's			Overview:								
(1822–1884) experiments with pea plants,			 Explains ~10⁶ inheritance patterns across ~10⁸ species. Example: Pea plant flower color (~10² traits). 								
introduced the principles of inheritance,											
including segregation, independent assortment, and dominance, laying the groundwork for genetics and its integration											
						into evolutiona	-				

Table 1: Overview of Emergence of Evolutionary Thoughts - Part 2