



# **Staff Selection Commission**

## Volume - 4

# **SOIL Foundation Engineering**



## Table of Content

| S<br>No. | Chapter Title                             | Page<br>No. |
|----------|-------------------------------------------|-------------|
| 1        | Basic Types of Soil                       | 1           |
| 2        | Properties of Soils                       | 5           |
| 3        | Classification of Soils                   | 37          |
| 4        | Soil Structure & Clay Minerals            | 45          |
| 5        | Soil Compaction                           | 51          |
| 6        | Effective Stress & Permeability           | 61          |
| 7        | Seepage Analysis                          | 89          |
| 8        | Vertical Stresses Below Applied Loads     | 103         |
| 9        | Compressibility & Consolidation of Soil   | 112         |
| 10       | Shear Strength of Soils                   | 143         |
| 11       | Lateral Earth Pressures & Retaining Walls | 173         |
| 12       | Bearing Capacity & Shallow Foundation     | 195         |

CHAPTER

# **PROPERTIES OF SOILS**

## THEORY

### **2.1 PROPERTIES OF SOILS**

#### 2.1.1 Phase Diagram

- Soil mass is in general a three phase system composed to solid, liquid and gaseous matter.
- The diagrammatic representation of the different phases in a soil mass is called the "phase diagram."
- A 3-phase system is applicable for partially saturated soil whereas, a 2-phase system is for saturated and dry states of soil.



#### 2.1.2 Water Content

$$W = \frac{W_w}{W_s} \times 100$$

 $W_w$  = Weight of water

 $W_s$  = Weight of solids

There can be no upper limit to water content. i.e.,  $w \geq \mathbf{0}$ 

#### 2.1.3 Void Ratio

$$e = \frac{V_v}{V_s}$$

 $V_v =$  Volume of voids

 $V_s =$  Volume of solids

Void ratio of fine grained soils are generally higher than those of coarse grained soils.

In general e > 0 i.e., no upper limit for void ratio.

#### 2.1.4 Porosity (% voids)

$$n = \frac{V_v}{V} \times 100$$

 $V_v =$  Volume of voids

V = Total volume of soil

Porosity cannot equal to 100% i.e.,

0 < n < 100

*Note* : In comparison to porosity, void ratio is more frequently used because volume of solids remains same, whereas total volume changes.

#### 2.1.5 Degree of Saturation

|                          | $S = \frac{V_w}{V_v} \times 100$ |
|--------------------------|----------------------------------|
| where                    | $V_w$ = Volume of water          |
|                          | $V_v$ = Volume of voids          |
|                          | $0 \le S \le 100$                |
| for perfectly dry soil   | S = 0                            |
| for Fully saturated soil | S = 100%                         |
|                          |                                  |

#### 2.1.6 Air Content

$$a_{c} = \frac{V_{a}}{V_{v}} = 1 - S$$

 $0\% \le a_c \le 100\%$ 

Percentage air voids (n<sub>a</sub>)

$$n_{a} = \frac{V_{a}}{V} \times 100$$

$$0\% \leq a_{c} < 100\%$$

Where

 $V_a$  = Volume of air

V = Total Volume

#### 2.1.7 Unit Weight

(a) Bulk Unit Weight

$$\gamma \ = \ \frac{W}{V} = \frac{W_s + W_w}{V_s + V_w + V_a}$$

Thus Bulk unit weight is total weight per unit volume.

(b) Dry Unit Weight

is the weight of soil solids per unit volume.

$$\gamma_d \; = \; \frac{W_s}{V}$$

Dry unit weight is used as a measure of denseness of soil. More dry unit weight means more compacted soil.

(c) Saturated Unit Weight : It is the ratio of total weight of fully saturated soil sample to its total volume.

$$\gamma_{sat} = \frac{W_{sat}}{V}$$

(d) Submerged Unit Weight :  $\gamma' = \gamma_{submerged} = \gamma_{sat.} - \gamma_{water}$ . Buoyant unit weight ( $\gamma'$ ). It is the submerged weight of soil solids per unit volume.

 $\gamma'$  is roughly  $\frac{1}{2}$  of saturated unit weight.

*Note* :  $\gamma_{solid} > \gamma_{sat} > \gamma_{bulk} > \gamma_{dry} > \gamma_{sub}$ 

(e) Unit Weight of Solids : It is the ratio weight of solids to the volume of solids present in given soil mass.

$$\gamma_{\text{solid}} = \frac{W_{\text{s}}}{V_{\text{s}}}$$

#### 2.1.8 Specific Gravity

**Absolute/true Specific Gravity :** Specific gravity of soil solid (G) is the ratio of the weight of a given volume of solids to the weight of an equivalent volume of water at  $4^{\circ}$ C.

$$G = \frac{W_s}{V_s \cdot \gamma_w} = \frac{\gamma_s}{\gamma_w}$$

Apparent or Mass Specific Gravity  $(G_m)$ : Mass specific gravity is the specific gravity of the soil mass and is defined as the ratio of the total weight of a given mass of soil to the weight of an equivalent volume of water.

$$G_{\rm m} = \frac{W}{V\gamma_{\rm w}} = \frac{\gamma}{\gamma_{\rm w}}$$

#### 2.2 Some Important Relationships

Relation between  $W_{s}$ , W and w:

$$W_s = \frac{W}{1+W}$$

Relation between e and n

$$n = \frac{e}{1+e}OR \quad e = \frac{n}{1-n}$$

Relation between e, w, G and S:

$$Se = w.G$$

Bulk unit weight (  $\gamma)$  in terms of G, e, w and  $\gamma_w$ 

Saturated unit weight ( $\gamma_{sat}$ ) in terms of G, e and  $\gamma_w$  (when S = 1)

$$\gamma_{\text{sat}} = \left[\frac{G+e}{1+e}\right] \cdot \gamma_{\text{w}}$$

 $\gamma = \frac{G\gamma_{w}(1+w)}{(1+e)}$ 

Dry unit weight ( $\gamma_d$ ) in terms of G, e and  $\gamma_w$  (when S = 0)

$$\gamma_{\rm d} = \frac{\rm G\gamma_{\rm w}}{1+\rm e}$$

Submerged unit weight  $(\gamma')$  in terms of G, e

and 
$$\gamma_{w} = \left(\frac{G-1}{1+e}\right) \cdot \gamma_{w}$$

Relation between  $\gamma,\gamma_d$  and  $\gamma_w$ 

$$\gamma_d = \frac{\gamma}{1+w}$$

#### 2.3 METHODS FOR DETERMINATION OF WATER CONTENT

#### 2.3.1 Pycnometer Method

- Quick method
- Capacity of pycnometer = 900 ml.
- This method is more suitable for cohesionless soils.
- Used when Specific gravity of soil solids is known.

| Let | $W_1 = Wt.$ of empty dried pycnometer bottle |
|-----|----------------------------------------------|
|     | $W_2 = Wt.$ of pycnometer + Moist Soil       |
|     | $W_3 = Wt.$ of pycnometer + Soil + Water     |
|     | $W_4 = Wt.$ of pycnometer + Water            |
|     |                                              |



If from  $W_3$ , the weight of solids  $W_s$  could be removed and replaced by the weight of an equivalent volume of water, the weight  $W_4$  will be:

$$W_{4} = W_{3} - W_{s} + \frac{W_{s}}{G\gamma_{w}} \cdot \gamma_{w} \qquad \left[ \because V_{s} = \frac{W_{s}}{\gamma_{s}} \text{ and } G = \frac{\gamma_{s}}{\gamma_{w}} \right]$$
$$W_{s} = (W_{3} - W_{4}). \quad \frac{G}{G-1} \qquad \dots (ii)$$

 $\Rightarrow$ 

$$\mathbf{w} = \left[\frac{(\mathbf{W}_2 - \mathbf{W}_1)}{(\mathbf{W}_3 - \mathbf{W}_4)} \cdot \left(\frac{\mathbf{G} - 1}{\mathbf{G}}\right) - 1\right] \times 100\%$$

#### 2.3.2 Oven Drying Method

- Simplest and most accurate method
- Soil sample is dried in a controlled temperature  $(105 110^{\circ} \text{ C})$ .
- For organic soils, temperature is about 60° C.
- Sample is dried for 24 hrs.

• For sandy soils, complete drying can be achieved in 4 to 6 hrs. Water content is calculated as :

$$w = \frac{W_2 - W_3}{W_3 - W_1} \times 100\%$$
  
W<sub>1</sub> = weight of container  
W<sub>2</sub> = weight of container + moist sample  
W<sub>3</sub> = weight of container + dried sample  
Weight of water = W<sub>2</sub> - W<sub>3</sub>  
Weight of solids = W<sub>3</sub> - W<sub>1</sub>

#### 2.3.3 Calcium Carbide Method/Rapid Moisture Meter Method

Quick method (required 5 to 7 minutes) but may not give accurate results.

The reaction involved is

where

 $CaC_2$ + 2H<sub>2</sub>O  $\rightarrow$  C<sub>2</sub>H<sub>2</sub>  $\uparrow$  + Ca(OH)<sub>2</sub>

Soil sample weight 4 - 6 gms.

The gauge reads water content with respect to wet soil.

i.e., 
$$w_r = \frac{W_w}{W_s + W_w}$$

Water content of the soil is determined indirectly from the pressure of acetylene  $(C_2H_2)$  gas formed. Actual water content

$$w = \frac{w_r}{1 - w_r} \times 100\%$$

#### 2.3.4 Sand Bath Method

- Quick, field method
- Used when electric oven is not available.
- Soil sample is put in a container and dried by placing it in a sand bath, which is heated on kerosene store.
- Water content is determined by using same formula as in oven drying method.

#### 2.3.5 Torsion Balance Moisture Meter Method

- Quick method for use in laboratory.
- Infrared radiations are used for drying samples.
- **Principle :** The torsion wire is prestressed accurately to an extent equal to 100% of the scale reading. Then the sample is evenly distributed on the balance pan to counteract the prestressed torsion and the scale is brought back to zero. As the sample dries, the loss in weight is continuously balanced by the rotation of a drum calibrated directly to read moisture % on wet basis.

#### 2.4 DETERMINATION OF SPECIFIC GRAVITY OF SOIL SOLIDS

- Pycnometer method is used.
  - Instead of pycnometer. Density bottle (50 ml) OR Flask (500 ml) can also be used. Let,

 $W_1$  = Weight of empty pycnometer

 $W_2$  = Weight of pycnometer + soil sample (oven dried)

 $W_3$  = Weight of pycnometer + soil solids + water

 $W_4$  = Weight of pycnometer + water



*Note* : Specific gravity values are generally reported at  $27^{\circ}$  C (in India) If T<sup>o</sup> C is the test temperature then Sp. Gr. at  $27^{\circ}$  C is given by,

$$G_{27^{\circ}C} = G_T \quad \frac{\text{Unit weight of water at } T^{\circ}C}{\text{Unit weight of water at } 27^{\circ}C}$$

If kerosene (better wetting agent) is used instead of water then.

$$G = \frac{W_s}{W_s - W_3 + W_4} \times K \qquad [K = Sp. gr. of kerosene]$$

G can also be determined indirectly by using shrinkage limit.

#### **2.5 Methods for the Determination of in Situ Unit Weight**

#### 2.5.1 Core–Cutter Method

- Used in case of non-cohesive soils.
- Cannot be used in case of hard and gravely soils.
- Method consists of driving a core-cutter (Volume = 1000 cc) into the soil and removing it, the cutter filled with soil is weighed. Volume of cutter is known from its dimensions and in situ unit weight

is obtained by dividing soil weight by volume of cutter.  $\gamma = \frac{W}{V}$ 

• If water content is known in laboratory, the dry unit weight can also be computed.

$$\gamma_d = \frac{\gamma}{1+w}$$

#### 2.5.2 Sand Replacement Method

- Used in case of hard and gravelly soils.
- A hole in ground is made. The excavated soil is weighed. The volume of hole is determined by replacing it with sand. In situ unit weight is obtained by dividing weight of excavated soil with volume of hole.

#### 2.5.3 Water Displacement Method

- Suitable for cohesive soils only, where it is possible to have a lump sample.
- A regular shape, well trimmed sample is weighed.  $(W_1)$ . It is coated with paraffin wax and again weighed  $(W_2)$ . The sample is now placed in a metal container filled with water upto the brim. Let the volume of displaced water be  $V_w$ . Then volume of uncoated specimen is calculated as,

 $\gamma = \frac{W_1}{V}$ 

$$\mathbf{V} = \mathbf{V}_{\mathrm{w}} - \left(\frac{\mathbf{W}_2 - \mathbf{W}_1}{\gamma_{\mathrm{P}}}\right)$$

where

$$\gamma_P$$
 = unit weight of paraffin wax

and bulk unit weight of soil

#### **2.6 GRAIN SIZE DISTRIBUTION**

Grain size analysis/particle size analysis involves the following methods :

- (i) For coarse grained soils sieve analysis further, for coarser of coarse – Dry sieve analysis for finer of coarse – Wet sieve analysis.
- (ii) For fine grained soils sedimentation analysis, It involves two methods
- (a) Hydrometer method
- (b) Pipette method.

#### 2.6.1 Analysis of Coarse Grained Soils

- (a) Sieve Analysis : (For Coarse Grained Soils)
- The fraction retained on 4.75 mm sieve is called the gravel fraction which is subjected to coarse sieve analysis.
- The material passing 4.75 mm sieve is further subjected to fine sieve analysis if it is sand or to a combined wet sieve and sedimentation analysis if silt and clay sizes are also present.
- Concept of "Percentage finer"

% retained on a particular sieve =  $\frac{\text{Weight of soil retained on that sieve}}{\text{Total weight of soil taken}} \times 100$ 

Cumulative % retained = sum of % retained on all sieves of larger sizes and the % retained on that particular sieve.

"Percentage finer" than the sieve under reference = 100% - Cumulative % retained.

#### 2.6.2 Analysis of Fine Grained Soils

Sedimentation Analysis : Most convenient for determining of grain size distribution of the soil fraction finer than 75  $\mu$ m.

- The analysis is based on stokes's law.
- If a single sphere is allowed to fall freely through a liquid of infinite extent, its vertical velocity is first increased rapidly under the action of gravity, but a constant velocity called the terminal velocity is reached with in a short time.
- According to stokes law, the terminal velocity is given by,

$$V = \frac{g}{18} \frac{\rho_s - \rho_w}{\mu} D^2$$

.....at 20° C

at 27° C

 $\rho_s$  = density of grains (g/cm<sup>3</sup>)

 $\rho_{\rm w}$  = density of water (g/cm<sup>3</sup>)

- $\mu$  = dynamic viscosity of water
- g = acceleration due to gravity (cm/s<sup>2</sup>)
- D = Diameter of grain (cm)

(i) By putting the values at 
$$20^{\circ}$$
 C, we get,

$$V \approx 91 D^2$$

where v is in cm/s

and D is in mm.

(ii)

If 'h' the height through which particle falls in time 't', then

$$\frac{\mathbf{n}}{\mathbf{t}} = \mathbf{k}.\mathbf{D}^2$$
$$\frac{\mathbf{D}_1}{\mathbf{D}_2} = \sqrt{\frac{\mathbf{h}_1}{\mathbf{h}_2} \cdot \frac{\mathbf{t}_2}{\mathbf{t}_1}}$$

 $\approx 107 \text{ D}^2$ 

...

• Stokes law is applicable for spheres of diameter between 0.2 mm and 0.0002 mm.

h

- Spheres of diameter larger than 0.2 mm falling through water cause turbulence, whereas, for spheres with diameter less than 0.0002 mm. Brownian motion takes place and the velocity of settlement is too small for a accurate measurement.
- Limitations of Stokes Law : The analysis is based on the assumption that the falling grain is spherical. But in soils, the finer particles are never truly spherical.
- Stoke's law considers the velocity of free fall of a single sphere in a suspension of infinite extent, whereas, the grain size analysis is usually carried out in a glass jar in which the extent of liquid is limited.
- The finer grains of the soil carry charge on their surface and have a tendency for floc formation. If the tendency to floc formation is not prevented, the diameter measured will be the diameter of the floc and not of the individual grain.

• Analysis of Fine Grained Soils : First step involved is preparation of soil sample, which is mixed with water and suspension is made.

Treatment given to soil sample :

- **Pre Treatment :** given before making of soil suspension to remove organic matters and calcium compounds.
- For organic matter oxidizing agent is used (e.g.,  $H_2O_2$ )
- For calcium compounds Acids are used (e.g., HCI)
- **Post Treatment :** Given after preparation of soil suspension to break the flocss formed due to presence of surface electric charges.
- The dispersing (deflocculating) agents used are sodium hexameta phosphate or calgon, sodium oxalate, etc.
- The analysis is carried out by the Hydrometer method or the pipette method. The principle of the test is same in both methods. The difference lies only in the method of making observations.
- **Pipette Method :** In this method, the weight of solids per cc of suspension is determined directly by collecting 10 cc of soil suspension from a specified sampling depth.
- If  $m_d = dry$  mass (obtained after drying the sample) then, mass present in unit volume of pipette.

$$= \frac{m_d}{\text{vol. of pipette}(V_p)} = \frac{m_d}{10\text{ml.}(V_p)}$$

• If  $M_d$  = total mass of soil dissolved in total volume of water (V). then mass/unit volume =  $\frac{M_d}{V}$ 

 $m_d$ 

Therefore. % finer is given by % N =  $\frac{\overline{V_p}}{\underline{M_d}}$ 

• If m is the mass of dispersing agent dissolved in the total volume V. then actual % finer.

% N = 
$$\frac{\frac{m_d}{V_p} - \frac{m}{V}}{\frac{M_d}{V}}$$

- **Hydrometer Method :** In this method the weight of solids present at any time is calculated indirectly by reading the density of soil suspension.
- Calibration of hydrometer : Establishing a relation between the hydrometer reading R<sub>11</sub> and effective depth (H<sub>e</sub>).
- The effective depth is the distance from the surface of the soil suspension to be the level at which the density of soil suspension is being measured.



• Effective depth is calculated as

$$H_e = H_1 + \frac{1}{2} \left( h - \frac{V_H}{A_j} \right)$$

where,

 $H_1$  = distance (cm) between any hydrometer reading and neck.

h = length of hydrometer bulb

 $V_{\rm H}$  = volume of hydrometer bulb

 $A_i$  = area of the cross section of the Jar.

Reading of Hydrometer is related to sp. gr. or density of soil suspension as:

$$G_{ss} = 1 + \frac{R_H}{1000}$$
 to ppen in you

Thus a reading of  $R_H = 25$  means.  $G_{ss} = 1.025$  and a reading of  $R_H = -25$  means.  $G_{ss} = 0.975$  % finer is given as:

$$N = \frac{G}{G-1} . \gamma_w . \frac{V}{W} . \frac{R_H}{10} \%$$

where,

G = Specific gravity of soil solids

 $R_{\rm H}$  = Final corrected value of hydrometer

V = Total volume of soil suspension

W = Weight of soil mass dissolved.

#### Corrections to Hydrometer Reading

**Meniscus Correction:** ( $C_m$ ) : Hydrometer reading is always corresponding to the upper level of meniscus. But it should be taken at lower level, Since hydrometer reading increase down word, Therefore, meniscus correction is always positive (+ $C_m$ ).

### **OBJECTIVE** SHEET

5

- 1. The liquid limit and plastic limit of sample are 65% and 29% respectively. The percentage of the soil fraction with grain size finer than 0.002 mm is 24. The activity ratio of the soil sample is
  - (a) 0.50 (b) 1.00
  - (c) 1.5 (d) 2.00
- 2. The given figure indicate the weights of different pycnometers:



 $\begin{array}{c} Empty \\ Pycnometer \\ W_1 \end{array} \begin{array}{c} Pycnometer \\ +Dry Soil \\ W_2 \end{array} \begin{array}{c} Pycnometer \\ +Soil + Water \\ W_3 \end{array} \begin{array}{c} Pycnometer \\ +Water \\ W_4 \end{array}$ 

The specific gravity of the solids is given by

(a) 
$$\frac{W_2}{W_4 - W_2}$$
  
(b)  $\frac{W_1 - W_2}{(W_3 - W_4) - (W_2 - W_3)}$ 

(c) 
$$\frac{W_2}{W_3 - W_4}$$

(d) 
$$\frac{W_2 - W_1}{(W_2 - W_1) - (W_3 - W_4)}$$

**3.** A soil sample has a shrinkage limit of 10% and specific gravity of soil solids as 2.7. The porosity of the soil at shrinkage limit is

| (a) | 21.2% | (b) | 27% |
|-----|-------|-----|-----|
|     |       |     |     |

- (c) 73% (d) 78.8%
- 4. In a wet soil mass, air occupies one-sixth of its volume and water occupies one-third of its volume. The void ratio of the soil is
  - (a) 0.25 (b) 0.5
  - (c) 1.00 (d) 1.50

Assertion (A): If the water table is very near to the subgrade of the road. It will ultimately cause cracking of the road surface.

**Reason** (**R**): The consistency of the soil will change from plastic to liquid state leading to its volumetric decrease.

- (a) Both A and R are true and R is the correct explanation of A
- (b) Both A and R are true but R is not a correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true

6. The standard plasticity chart to classify fine grained soils is shown in the given figure.



- The area marked X represents
- (a) silt of low plasticity
- (b) clay of high plasticity
- (c) organic soil of medium plasticity
- (d) clay of intermediate plasticity
- 7. A soil sample is having a specific gravity of 2.60 and a void ratio of 0.78. The water content in percentage required to fully saturate the soil at that void ratio would be
  - (a) 10 (b) 30
  - (c) 50 (d) 70
- **8.** A dry soil has mass specific gravity of 1.35.If the specific gravity of solids is 2.7, then the void ratio will be

(a) 0.5 (b) 1.0 (c) 1.5 (d) 2.0

**9.** A clay sample has a void ratio of 0.50 in dry state and specific gravity of solids = 2.70. Its shrinkage limit will be

| (a) | 12%   | (b) | 13.5% |
|-----|-------|-----|-------|
| (c) | 18.5% | (d) | 22%   |

- A soil has liquid limit of 60% plastic limit of 35% and shrinkage limit of 20% and it has a natural moisture content of 50%. The liquidity index of soil is
  - (a) 1.5 (b) 1.25
  - (c) 0.6 (d) 0.4
- **11.** Consider the following statements in relation to the given sketch:

| Volume (cc) |        | Weight (g) |
|-------------|--------|------------|
| 0.2         | Air    | 0          |
| 0.3         | Water  | 0.3        |
| 0.5         | Solids | 0.1        |

- 1. Soil is partially saturated at degree of saturation = 60%
- **2.** Void ratio = 40%
- **3.** Water content = 30%
- 4. Saturated unit weight = 1.5 g/cc

Which of these statements is/are correct?

- (a) 1, 2 and 3 (b) 1, 3 and 4
- (c) 2, 3 and 4 (d) 1, 2 and 4
- 12. A soil has a liquid limit of 45% and lies above the A-line when plotted on a plasticity chart. The group symbol of the soil as per IS soil Classification is
  - (a) CH (b) CI
  - (c) CL (d) MI
- **13.** The dry density of a soil is 1.5 g/cc. If the saturation water content were 50% then its saturated density and submerged density would, respectively, be
  - (a) 1.5 g/cc and 1.0 g/cc
  - (b) 2.0 g/cc and 1.0 g/cc
  - (c) 2.25 g/cc and 1.25 g/cc
  - (d) 2.50 g/cc and 1.50 g/cc
- 14. A fill having a volume of 1,50.000 cum is to be constructed at a void ratio of 0.8. The borrow pit soil has a void ratio of 1.4. The volume of soil required (in cubic meters) to be excavated from the borrow pit will be

| (a) | 1,87,500 | (b) | 2,00,000 |
|-----|----------|-----|----------|
| ~ ~ |          |     |          |

(c) 2,10,000 (d) 2,25,000

- **15.** The moisture content of a clayey soil is gradually decreased from a large value. What will be the correct sequence of the occurrence of the following limits?
  - 1. Shrinkage limit
  - 2. Plastic limit
  - **3.** Liquid limit

Select the correct answer using the codes given below:

| (a) | 1, 2, 3 | (b) | 1, 3, 2 |
|-----|---------|-----|---------|
| (c) | 3, 2, 1 | (d) | 3, 1, 2 |

- 16. The initial and final void ratios of a clay sample in a consolidation test are 1 and 0.5, respectively. If initial thickness of the sample is 2.4 cm, then its final thickness will be
  - (a) 1.3 cm (b) 1.8 cm
  - (c) 1.9 cm (d) 2.2 cm
- 17. Given that Plasticity index (PI) of local soil = 15 and PI of sand = zero, for a desired PI of 6, the percentage of sand in the mix should be
  - (a) 70 (b) 60
  - (c) 40 (d) 30
- 18. A clayey soil has liquid limit = w<sub>L</sub>; plastic limit
   = w<sub>p</sub> and natural moisture content = w. The consistency index of the soil is given by

(a) 
$$\frac{W_{L} - W_{p}}{W_{L} - W_{p}}$$
 (b)  $\frac{W_{L} - W_{p}}{W_{L} - W}$ 

(c) 
$$\frac{W_P - W}{W_L - W_P}$$
 (d)  $\frac{W_L - W_P}{W_P - W}$ 

- 19. Consider the following statements:
  - 1. 'Relative compaction' is not the same as 'relative density'.
  - 2. Vibrofloatation is not effective in the case of highly cohesive soils.
  - **3.** 'Zero air void line' and 100% saturation line are not identical.

Which of these statements is/are correct?

- (a) 1 and 2 (b) 1 and 3
- (c) 2 and 3 (d) 3 alone

20. A soil has mass unit weight  $\gamma$ , water content 'w' (as ratio). The specific gravity of soil solids = G, unit weight of water =  $\gamma_w$ ; S the degree of saturation of the soil is given by

(a) 
$$S = \frac{1+w}{\frac{\gamma_w}{\gamma}(1+w) - \frac{1}{G}}$$

(b) 
$$S = \frac{w}{\frac{\gamma_w}{\gamma}(1+w) - \frac{1}{G}}$$
  
(c) 
$$S = \frac{(1+w)}{\frac{\gamma_w}{\gamma}(1-w) - \frac{1}{G}}$$
  
(d) 
$$S = \frac{w}{\frac{\gamma_w}{\gamma}(1+w) - \frac{1}{G}}$$

$$\frac{\gamma}{\gamma}(1+w) =$$

**21.** The saturated and dry densities of a soil are respectively 2000 kg/m<sup>3</sup> and 1500 kg/m<sup>3</sup>. The water content (in percentage) of the soil in the saturated state would be

wG

22. If a soil sample of weight 0.18 kg having a volume of  $10^{-4}$  m<sup>3</sup> and dry unit weight of 1600 kg/m<sup>3</sup> is mixed with 0.02 kg of water then the water content in the sample will be

- (c) 20% (d) 15%
- **23.** Match List-I (Terms) with List-II (Formulae) and select the correct answer using the codes given below the lists:

|    | List-I               |    | List-II           |
|----|----------------------|----|-------------------|
| A. | Void Ratio           | 1. | $\frac{V_V}{V}$   |
| B. | Porosity             | 2. | $\frac{W_W}{W_S}$ |
| C. | Degree of saturation | 3. | $\frac{V_W}{V_V}$ |
| D. | Water content        | 4. | $\frac{W}{V}$     |
|    |                      |    | 17                |

5.  $\frac{\mathbf{v}_{\mathrm{V}}}{\mathrm{V}_{\mathrm{s}}}$ 

| Codes: | Α | В | С | D |
|--------|---|---|---|---|
| (a)    | 4 | 3 | 5 | 1 |
| (b)    | 5 | 4 | 3 | 1 |
| (c)    | 4 | 1 | 5 | 2 |
| (d)    | 5 | 1 | 3 | 2 |

24. If an unconfined compressive strength of 4 kg/ cm<sup>2</sup> in the natural state of clay reduces by four times in the remoulded state, then its sensitivity will be

| (a) | 1 | (b) | 2 |
|-----|---|-----|---|
|     |   |     |   |

- (c) 4 (d) 8
- **25.** The value of porosity of a soil sample in which the total volume of soil grains is equal to twice the total volume of voids would be
  - (a) 75% (b) 66.66%
  - (c) 50% (d) 33.33%
- 26. A soil has a liquid limit of 40% and plasticity index of 20%. The plastic limit of the soil will be
  (a) 20%
  (b) 30%
  - (c) 40% (d) 60%
- 27. A sample of saturated sand has a dry unit weight of 18 kN/m<sup>3</sup> and a specific gravity of 2.7. If density of water is 10 kN/m<sup>3</sup>, the void ratio of the soil sample will be

| (a) 0.5 | (b) 0.6 |
|---------|---------|
| (c) 0.4 | (d) 0.9 |

#### Common Data for Questions :28 & 29

For constructing an embankment, the soil is transported from a borrow area using a truck which can carry  $6m^3$  of soil at a time. The details are as follows.

| Property               | Borrow<br>area | Truck<br>(loose) | Field<br>(compacted) |  |
|------------------------|----------------|------------------|----------------------|--|
| Bulk density<br>(g/cc) | 1.66           | 1.15             | 1.82                 |  |
| Water content<br>(%)   | 8              | 6                | 14                   |  |

**28.** The quantity of soil to be excavated from the borrow pit, in  $m^3$  for a compacted earth fill of 100  $m^3$  is

|     | (a)         | 104 cum                            | (b)                          | 146 cum                              |   |
|-----|-------------|------------------------------------|------------------------------|--------------------------------------|---|
|     | (c)         | 98 cum                             | (d)                          | 87 cum                               |   |
| 29. | The<br>obta | number o<br>in 100m <sup>3</sup> o | f truck load<br>of compacted | s of soil required t<br>l earth fill | 0 |

| (a) | 12 nos. | (b) | 56 nos. |
|-----|---------|-----|---------|
| (c) | 25 nos. | (d) | 33 nos  |

|     | transported as sediment but remains in place, is called               |              | How many cubic meters of this soil will be required to construct an embankment of $100 \text{ m}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |
|-----|-----------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|     | (a) alluvial soil (b) glacial soil                                    |              | volume with a dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | density of 16 $kN/m^3$ .                      |
|     | (c) residual soil (d) aeoline soil                                    |              | (a) 94 $m^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b) $106 \text{ m}^3$                         |
| 31. | Aeolian soils are                                                     |              | (c) $100m^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (d) $90m^3$                                   |
|     | (a) Residual soils (b) Wind deposits                                  | 40           | The void ratio and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | specific gravity of a soil are                |
|     | (c) Gravity deposits (d) Water deposits                               | ч <b>0</b> . | 0.65 and $2.72$ r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | espectively. The degree of                    |
| 32. | If the porosity of a soil sample is 20%, the void                     |              | saturation (in per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cent) corresponding to water                  |
|     | ratio is                                                              |              | content of 20% is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ter the spontang to thater                    |
|     | (a) 0.20 (b) 0.80                                                     |              | (a) 653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (b) 20.9                                      |
|     | (c) 1.00 (d) 0.25                                                     |              | (c) $83.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (d) $54.4$                                    |
| 33. | Consistency Index for a clayey soil is [{LL=                          | 41           | A dry soil sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | has equal amounts of solids                   |
|     | Liquid Limit, PI = Plasticity Index, w = natural<br>moisture content] |              | and voids by volume. It void ratio and porosity will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |
|     |                                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |
|     | LL-w w-PL                                                             |              | Void ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Porosity (%)                                  |
|     | (a) $-\underline{PI}$ (b) $-\underline{PI}$                           |              | (a) 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100%                                          |
|     | (c) $LL - PL$ (d) 0.5 w                                               |              | (a) $1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50%                                           |
| 34. | If soil is dried beyond its shrinkage limit, it will                  |              | (0) 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1009/                                         |
|     | show                                                                  |              | (0) 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500/                                          |
|     | (a) Large volume change                                               | 42           | $\begin{array}{c} (\mathbf{d})  1.0 \\ \mathbf{T}_{\mathbf{b}} = \mathbf{u}_{\mathbf{b}} = \mathbf{t}_{\mathbf{b}}^{\mathbf{b}} $ | 50%                                           |
|     | (b) Moderate volume change                                            | 42.          | size finer than 2 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | is and the percentage of grain                |
|     | (c) Low volume change                                                 |              | Size filler than 2 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tively. Its activity ratio is                 |
|     | (d) No volume change                                                  |              | 25 and $15$ , respec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (b) 1.67                                      |
| 35. | The toughness index of clayey soils is given by                       |              | (a) $2.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0)                                           |
|     | (a) Plasticity index/Flow index                                       | 4.2          | (c) 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(\mathbf{d}) \ 0.6$                          |
|     | (b) liquid limit /Plastic limit                                       | 43.          | A soll sample hav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ing a void ratio of 1.3, water                |
|     | (c) Liquidity index /plastic limit                                    |              | is in a state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | id a specific gravity of 2.00,                |
|     | (d) Plastic limit/Liquidity index                                     |              | (a) partial saturati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on (b) full saturation                        |
| 36. | A soil sample in its natural state has mass of                        |              | (a) partial saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (d) under saturation                          |
|     | 2.290 kg and a volume of $1.15 \times 10^{-3}$ m <sup>3</sup> . After | 4.4          | (c) over saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ation of a cond completic 0.6                 |
|     | being oven dried, the mass of the sample is                           | 44.          | and its density inde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | atio of a sand sample is 0.0                  |
|     | 2.035 kg. $G_s$ for soil is 2.68. The void ratio of                   |              | loosest state is 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9 then the void ratio in the                  |
|     | the natural soil is                                                   |              | densest state will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | be                                            |
|     | (a) $0.40$ (b) $0.45$                                                 |              | (a) $0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (b) 0 3                                       |
| 27  | (c) 0.55 (d) 0.53                                                     |              | (c) $0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (d) $0.5$                                     |
| 57. | submerged unit weight and saturated weight of                         | 45           | Which one of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | following correctly represents                |
|     | a soil is based on                                                    |              | the dry unit weight of a soil sample which has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |
|     | (a) Equilibrium of floating bodies                                    |              | a bulk unit weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of $\gamma_t$ at a moisture content of        |
|     | (b) Archimedes' principle                                             |              | w%?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |
|     | (c) Stokes' law                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |
|     | (d) Darcy's law                                                       |              | (a) $\frac{W\gamma_t}{W\gamma_t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (b) $\gamma_t \left( 1 + \frac{W}{W} \right)$ |
| 38. | A soil sample has a void ratio of 0.5 and its                         |              | (100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0) $(100)$                                   |
| 501 | porosity will be close to                                             |              | $\begin{pmatrix} 100 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |
|     | (a) 50% (b) 66%                                                       |              | (c) $\gamma_t \left( \frac{100}{100} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (d) $\frac{\gamma_t(100 - W)}{100}$           |
|     |                                                                       |              | (100 + W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                           |

**30.** When the product of rock weathering is not **39.** A borrow pit soil has a dry density of  $17 \text{ kN/m}^3$ .

- (c) 100% (d) 33%
- 15