

RRB - TECHNICIAN

Grade - 3

Railway Recruitment Board (RRB)

Volume - 2

Science

विषयसूची

S No.	Chapter Title	Page No.
1	Structure of the Human body	1
2	Blood Group and Rh Factor	48
3	Food and Nutrition	52
4	Basics of Everyday Physics	59
5	Basics of Everyday Chemistry	81

1 Chapter

Structure of Human Body

<u>Cell</u>

- > Simplest and most basic unit of life.
- > Discovered: Robert Hooke (1665)
- All living things made up of cellsstructural, functional, and biological unit of life.
- > Has the **ability to duplicate itself** on its
- > aka "building blocks of life."

Cell Structure and its components

Cell Organelles

Present within a cell & perform certain specific functions to carry out life's processes.

Plasma / Cell	> Outermost covering of the cell	
Membrane	> Separates contents of cell from its external environment.	
	> A selectively permeable membrane as it allows entry and exit of some materials in and out of the cell.	
Cell Wall	> ONLY in plants	
	> Outside the plasma membrane.	
	> Mainly composed of cellulose.	
	✓ Cellulose: A complex substance - provides structural strength to plants.	
Cytoplasm	> Jelly-like substance present between cell membrane & nucleus.	
	> Fluid content inside plasma membrane.	
	> Contains many specialised cell organelles (mitochondria, golgi bodies, ribosomes, etc)	
Nucleus	> Contains chromosomes that contain information for inheritance of features	
	from parents to next generation in form of DNA	
	> Plays a central role in cellular reproduction.	
	> Nuclear membrane- a double-layered covering on nucleus.	
	✓ Allows transfer of material from inside nucleus to its outside, i.e.,	
	to cytoplasm.	
Nucleolus	> Ribosome synthesis site regulating cellular activity and reproduction.	

Gene	Unit of inheritance in living organisms.	
Protoplasm	> Entire content of a living cell [cytoplasm + nucleus].	
	> aka living substance of the cell.	
Chromosomes	> Rod-shaped structures	
	> Visible only when the cell is about to divide.	
	> Contain information for inheritance of features from parents to next	
	generation in the form of DNA (deoxyribo nucleic acid)	
	> Composed of DNA and Protein.	
DNA molecules	> Contains information necessary for constructing and organising cells.	
	> Functional segments of DNA - genes .	
Vacuoles	> Empty structure in cytoplasm	
	Act as storage sacs for solid or liquid contents.	
	> Common in plant cells.	
	> Smaller in animal cells.	
	> Substances stored- amino acids, sugars, various organic acids and some	
	proteins.	
Endoplasmic	> A large network of membrane-bound tubes and sheets.	
Reticulum	> 2 types :	
	1. Rough endoplasmic reticulum [RER]	
	✓ Has ribosomes attached to its surface.	
	✓ Ribosomes - sites of protein manufacture.	
	2. Smooth endoplasmic reticulum	
	✓ Helps in the manufacture of fat molecules, or lipids, important for cell function.	
	✓ Some of these proteins and lipids help in building the cell membrane k/a membrane biogenesis.	
	> Serve as channels for transport of materials between various regions of	
	cytoplasm or between the cytoplasm and the nucleus.	
	> Also functions as a cytoplasmic framework providing a surface for some	
	biochemical activities of cells.	
Golgi Apparatus/		
Complex	in stacks called cisterns.	
'		

	> Packages and dispatches material synthesised near ER to various	
	targets inside and outside the cell.	
	> Stores, modifies and packages products in vesicles.	
	Involved in the formation of lysosomes.	
	✓ Membrane-bound sacs filled with digestive enzymes.	
	✓ Kind of waste disposal system of the cell.	
	✓ Help to keep the cell clean by digesting any foreign material as	
	well as worn-out cell organelles .	
Mitochondria	> Aka powerhouse of the cell.	
	> Energy required for various chemical activities is released by	
	mitochondria in the form of ATP (Adenosine Triphosphate) molecules.	
	> 2 membranes:	
	✓ Outer membrane- porous	
	✓ Inner membrane – deeply folded.	
	■ Folds create a large surface area for ATP-generating chemical	
	reactions.	
ATP	> aka energy currency of the cell.	
	> Body uses energy stored in ATP for making new chemical compounds	
,	and for mechanical work.	
Ribosomes	> Site of protein synthesis.	
	> Polyribosomes or Polysomes: Several ribosomes may attach to a single	
	mRNA and form a chain.	
	> Prokaryotes- ribosomes are associated with the plasma membrane of the	
	cell.	
Cilia and	> Hair-like outgrowths of the cell membrane.	
Flagella Cilia	> Cilia - small structures which work like oars, causing the movement	
	of either the cell or the surrounding fluid.	
	> Flagella - comparatively longer and responsible for cell movement.	
	> Prokaryotic bacteria have flagella but structurally different from	
	eukaryotic flagella.	
Centrosome and	> Centrosome- an organelle usually containing 2 cylindrical structures	
Centrioles	called centrioles.	
	> Surrounded by amorphous pericentriolar materials.	
	> Both the centrioles in a centrosome lie perpendicular to each other	

Types of Cells

Prokaryotic Cell	Eukaryotic Cell
> Primitive/undeveloped nucleus.	> Has true or developed nucleus
> Size - 0.2 - 2.0 micrometers	> Size - 10- 100 micrometers.
> Simpler in structure	> More complex
> Organelles not membrane-bound	> Organelles membrane bound & specific in function.
> DNA arranged in circular shape	> DNA linear in shape
> Cytoplasm present, but lacks in most cell organelles.	> Consists of both cytoplasm and organelles
> Cell wall present.	> Usually, absence of cell wall here.
> Made of mucopeptide or peptidoglycan	> Made of cellulose
> Cell division - binary fission, transduction, conjugation, and transformation	> Cell division - mitosis
> Mitochondria absent	> Mitochondria present .
> Endoplasmic reticulum not present.	> Endoplasmic reticulum present .
> Ribosome present	> Ribosome present
> Plasmids commonly found.	> Plasmids very rarely found
✓ A small, circular, double-stranded	
DNA molecule distinct from a cell's	
chromosomal DNA.	
√ Naturally exist in bacterial cells.	
> Only asexual reproduction.	> Both sexual and asexual reproduction.
> Have a single origin of replication	> Have multiple origins of replication
> Only I chromosome.	> Many chromosomes present
> Eg. Bacteria and Archaea.	> Eg . Plant and animal cells.

Plant and Animal Cells

Fig : Animal Cell

	Animal Cell	Plant Cell
Nucleus	Present	Present
Cilia	Present	Very rare
Shape	Round (irregular shape)	Rectangular (fixed shape)
Chloroplast	NO chloroplasts	Chloroplasts present
Cytoplasm	Present	Present
Endoplasmic	Present	Present
Reticulum	, , , ,	
Ribosomes	Present	Present
Mitochondria	Present	Present
Vacuole	One or more small vacuoles (much	One large central vacuole taking up
	smaller than plant cells).	90% of cell volume.

<u>Tissues</u>

- A group of cells with similar shape and function.
- ightarrow **Group of (**cells ightarrowTissues ightarrow Organs ightarrow Organ systems).
- > Histology: study of tissues.

Types of Tissues

1. Plant Tissues

On the basis of the dividing capacity, plant tissues are of two types:

A. Meristematic tissues

- > Consist of actively-dividing cells.
- > 3 types:
 - a. Apical meristem:
 - ✓ Present at the growing tips of stems and roots.
 - ✓ Increases the length of stems and roots.

b. Intercalary meristem:

- ✓ Present at the base of leaves or internodes.
- ✓ Longitudinal growth of plants.

c. Lateral meristem:

- ✓ Present on the lateral sides of the stems and roots.
- ✓ Increases thickness of stems and roots.

B. Permanent Tissues

- > Formed when cells from meristematic tissues loose the ability to divide.
- > 2 types:

a. Simple permanent tissue:

- ✓ Consist of only one type of cells.
- √ Types:

Fig : Various types of simple tissues : (a) Parenchyma (b) Collenchyma (c) Sclerenchyma

(i) transverse section (ii) longitudinal section

✓ Parenchyma:

- Composed of unspecialised living cells with relatively thin cell walls, intercellular space.
- Present in soft parts of the plant.
- Main function storage.

✓ Collenchyma:

- Composed of living and elongated cells with cell walls irregularly thickened at the comers.
- No intercellular space.
- Provides mechanical support and elasticity to plant - helps in bending of leaves and stems.

√ Sclerenchyma:

- Composed of long, narrow, and thickwalled cells.
- Made up of dead cells.
- No intercellular spaces.
- Present in seeds, nuts, the husk of a coconut, fibres of jute etc.

✓ Protective tissues:

Protect the plant body by forming an outer layer.

■ 2 types:

F Epidermis:

- Covers the entire body of plant.
- Protect plants from injury, germs and water loss.
- Cells form a continuous layer without intercellular spaces.

✓ Cork Simple Tissues:

- Consist dead cells with no intercellular spaces.
- Form the outer layer of old tree trunks.
- Cells have a chemical suberin in their walls that makes them impervious to gases and water.
- **Protects plants** from injuries, germs and water loss.
- **Lightweight** used for making several products like bottle stoppers and shuttlecock.

Difference between parenchyma, collenchyma and sclerenchyma

Features	Parenchyma	Collencyma	Sclerenchyma
Cell shape	Isodiametric cells	Circular, oval or	Variable in shape
	which are oval, sperical or polygonal shape.	polyhedral	Fibres and sclereids
Cell wall	Thin cellulosic cell wall	Uneven thickeving on	Lighified secondary
		their cell wall	cell wall present.
Cytoplasm	Abundant	Present	Absent
Nucleus	Prsent (Living tissue)	Present (Living tissue)	Absent (Dead tissue)
Vacuoles	Large vacuole	Vacuolated	Absent
Intercellular spaces	Present	Absent	Absent
Occurrence	Basically packing	Dicot stem, petiole and	Dicot hypodermis,
	tissue all soft part of	beneath the epidermis	bundle sheath, pericyct
	plant-path ocrtex,	Absent in monocot	seed, pulp of fruits.
	medullary rays	and roots	

b. Complex permanent tissue:

- Made up of more than one type of cells (Conducting tissues.)
- > Types:
 - ✓ Xylem:

- Conducts water and minerals from roots to different parts of plant.
- 4 different types of cells:
 - Tracheids
 - Elongated angular dead cells mainly involved in conduction of water and minerals in gymnosperms.

Vessels

- Advance element (generally found in angiosperms).
- Cylindrical tube like structures
 placed one above other end to
 end to form a continuous
 channel for efficient conduction
 of water.

☞ Xylem parenchyma —

 Small & thick walled parenchymatous cells subjected for storage of starch (food).

Xylem sclerenchyma

 Non-living fibres with thick walls and narrow cavities provide mechanical support.

Except xylem parenchyma all other xylem elements are dead.

- **Conducts food material** from the leaves to the different parts of the plant.
- 4 types of cells
 - Sieve tubes:
 - Slender tube like structures made up of elongated, thin walled cells placed end to end.
 - End walls perforated by numerous pores, called as sieve plates.

Companion cells

- Have dense cytoplasm and prominent nuclei.
- Sieve cells +companion
 cells = sister cells
 (originate from single mother cell).

Phloem fibre

 Mechanical support to sieve tubes.

Phloem parenchyma

 Store food and help in radial conduction of food.

Features	Xylem	Phloem
Cells: Living/ dead	Dead	Living
Cell walls: Thickness	Thick	Thin
Material	Lignin	Cellulose
Permeability	Impermealble	Permeable
Cross walls	None	Sieve Plates
Cytoplasm	None	Yes
Function	Carries water and salts	Carries sugar
Direction of flow	Upwards	Down and up
Special features	Fibres	Companion cells

Animal Tissues

> 4 types:

- A. Epithelial tissues:
 - Always grow on some other types of tissue.
- ✓ Cells very close to each other and tissue rests on a non-cellular basement membrane.
- ✓ Consists of single layer of cells.
- ✓ Blood vessels absent and nonnervous in nature.

- ✓ Covers all the organs and lines the cavities of hollow organs like stomach.
- ✓ **Primarily protective** in function.
- ✓ Types:
- a. Squamous epithelium:
 - aka pavement epithelium.
 - Single layer of flat cells.
 - Location: Lining of the mouth, oesophagus, lung, alveoli, etc.

b. Cuboidal epithelium:

- Found in kidney tubules, thyroid vesicles & in glands (salivary glands, sweat glands)
- Forms germinal epithelium of gonads (testes & ovaries).
- Involves absorption, excretion
 & secretion.
- Provides mechanical support

c. Columnar epithelium:

- Consists of elongated or column-like cells.
- Location: Inner lining of the intestine and gut.
- Function: secretion and absorption.

d. Ciliated epithelium -

- May be cubical or columnar.
- Cilia present on its free surface
- Helps in the movement of ova in the fallopian tube.

B. Connective tissues

- > Cells are loosely spaced and embedded in an intercellular matrix.
- Specialised to connect various body organs.

> Types:

✓ Blood

■ Plasma:

- o Fluid (liquid) matrix of blood.
- A yellowish liquid like material.
- Contains 3 types of blood cells suspended in it:
- RBC Red blood cells
- WBC White blood Cells
- Platelets

✓ Bones:

- Forms the framework that supports the body.
- A strong and nonflexible tissue.
- Cells embedded in a hard matrix composed of calcium and phosphorus compounds.

✓ Ligaments:

- Connects 2 bones.
- Flexible or elastic in nature.

✓ Tendons:

- Bones connected to muscles by Tendons.
- Fibrous tissue with great strength but limited flexibility.

✓ Cartilage:

- Widely spaced cells.
- Solid matrix composed of proteins and sugars.
- Smoothens bone surfaces at joints
- Also present in the nose, ear, trachea and larynx.

✓ Areolar tissue:

- Found in **skin** and **muscles**, around the **blood vessels**, **nerves**, etc.
- Fills space inside organs, supports internal organs and helps in repair of tissues.

√ Adipose tissue:

- Found between the internal organs and below the skin.
- Stores fats.
- Acts as an insulator.

C. Muscular Tissue

- > Long fibre-like cells called muscle fibres.
- > Capable of contraction or relaxation.

> Types:

√ Striated muscles

- aka voluntary muscles under the control of one's will.
- Muscle fibres or cells are multinucleated and unbranched.
- Each fibre is enclosed by thin membrane which is called as sarcolemma.
- Cytoplasm k/a sarcoplasm.
- Get tired and need rest.

✓ Cardiac muscles

- Involuntary muscles.
- Only **found** in the **walls** of **heart**.
- Uninucleated and branched.
- Branches are united by intercalated disc.
- Rhythmic contraction and relaxation occurs throughout the life.

- ✓ Non-striated / Involuntary / smooth muscles.
 - Uninucleated and spindle shaped.
 - Not enclosed by membrane but many fibres are joined together in bundles.
 - Found in the walls of stomach, intestine, urinary bladder, bronchi, iris of eye etc.
 - **Eg.** Peristaltic movements in alimentary canal are brought about by smooth muscles.

D. Nervous Tissue

- Highly specialized tissue due to which the animals are able to perceive and respond to the stimuli.
- Functional unit nerve cell or neuron.
- > **Cell body** cyton covered by plasma membrane.

- Dendron Short hair like extensions rising from cyton further subdivided into dendrites.
- Axon Long, tail like cylindrical process with fine branches at the end - covered by a sheath.
- > Synapse- Axon of one neuron is very closely placed to the dendrons of another neuron to carry impulses from one to another neuron in the form of electrochemical waves- close proximity k/a synapse.

Life processes

- > Process which are necessary to sustain life on earth.
- > **Eg-** Digestion, Respiration, Circulation etc.

Nutrition in Human Beings / Digestive System

Components:

1. Alimentary Canal:

Comprises of mouth, oesophagus, stomach, small intestine and large intestine.

2. Associated Glands:

- > Salivary gland
- > Gastric Glands
- Liver
- > Pancreas

1. Ingestion:

- > Food is ingested through the mouth.
- > Put into the mouth with the help of hands.

2. Digestion:

Mouth or Buccal Cavity:

Mouth	\rightarrow	Intake of whole food
\downarrow		
Teeth	\rightarrow	Chewing/grinding of food
↓		
Tongue	\rightarrow	Rolling of food
↓		+
		Tasting of food
		+
Salivary	\rightarrow	Swallowing/pushing down of
Glande		the food secrete saliva +
\downarrow		Mucus
		Salivary
		Starch $ ightarrow$ Maltose
		Amylase
		(sugar)
		[Saliva]

- > Mouth has teeth, tongue & salivary glands.
- > Tongue helps in turning over food so that saliva can be properly mixed in it.
- > **Teeth** help in **breaking down food** into smaller particles.

- Process of digestion starts in the mouth itself.
 - ✓ Saliva contains an enzyme k/a salivary amylase/ ptyalin that converts starch → sugar (sucrose/ maltose).

Oesophagus/ Food Pipe:

- > Slightly digested food in the mouth is swallowed by the tongue.
- > Goes down food pipe called oesophagus.
- Food enters the food pipe walls of food pipe start contraction and expansion movements k/a peristaltic movement.
- Pushes the slightly digested food into the stomach.

Stomach

- > A J-shaped organ.
- > Highly muscular walls:
 - ✓ Churning the food.
 - ✓ Secrete hydrochloric acid that kills germs which may be present in food.
 - Makes medium inside stomach acidic that activates enzyme pepsin partial digestion of protein.
 - Mucus secreted by walls of the stomach saves inner lining of stomach from getting damaged from hydrochloric acid

Stomach → Gastric glands secrete Gastric Juice Gastric Juice

Small Intestine

The food from the stomach enters the small intestine. This is the longest part of the alimentary canal which is fitted into a compact space because of extensive coiling. The length of the small intestine differs in various animals depending on the food they eat.

Herbivores eating grass need a longer small intestine to allow the cellulose to be digested as it is harder to digest

Meat is easier to digest, hence carnivores like tigers have a shorter small intestine.

- > A highly coiled tube-like structure.
- Longer than large intestine but its lumen is smaller than large intestine.
- > 3 parts:
 - ✓ Duodenum
 - ✓ Jejunum
 - ✓ Ileum.

- From stomach, partially digested food enters small intestine.
- Largest part (about 6.5m) of the alimentary canal.
- Very narrow and arranged in the form of a coil.
- Site of complete digestion of food (like carbohydrates, proteins and fats)
- > Receives secretion of two glands:

I. Liver

- Secretes bile a greenish yellow liquid made in the liver and stored in gall bladder.
- > Functions of bile:
 - ✓ Makes acidic food from stomach alkaline - pancreatic enzymes can act.
 - ✓ Break fats present in food into small globules making it easy for enzymes to act and digest them.

- > Secretes pancreatic juice containing enzymes like pancreatic amylase for breaking down starch, trypsin for digesting proteins and lipase for breaking down emulsified fats.
- Walls of small intestine contain glands which secretes intestinal juice. Enzymes present convert proteins into amino acids, complex carbohydrates into glucose and fats into fatty acids and glycerol.
- Convert large and insoluble food molecules into small water soluble molecules.

2. Pancreas

3. Absorption:

- Small intestine site of absorption of digested food.
- > Inner surface of small intestine has numerous finger-like projections k/a villi.
- > Digested food absorbed through walls of small intestine goes into our blood.

Villi:

- Finger like structures in the inner wall in ileum.
- Increase surface area inside ileum facilitate optimum absorption.
- Reduce lumen of ileum so that food can stay for a longer duration in it, for optimum absorption.
- > Digested food is absorbed by villi.

4. Assimilation:

- Blood carries digested and dissolved food to all parts of body.
- Assimilated as part of the cells and is utilised for obtaining energy, building up new tissues and the repair of old tissues.

5. Egestion:

- Unabsorbed food sent into large intestine - reabsorb water & salts.
- > Rest is removed from the body via the anus.
- > The exit of this waste material is regulated by the anal sphincter.

Large Intestine:

- > Smaller than small intestine.
- Vndigested food goes into the large intestine.
- > Absorb excess water and salt.
- Vndigested food then goes to the rectum - expelled out through the anus.

Respiration

> Involves 2 process:

- ✓ Breathing: Intake of oxygen and release of CO2.
- ✓ Breakdown of simple food in order to release energy inside the cell.
- An oxidation reaction in which carbohydrate is oxidized to produce energy.
- > Mitochondria site of respiration
- > Steps:
- 1. Breaking down of glucose into pyruvate:
- > In the cytoplasm.
- Glucose (6 carbon molecule) broken down into pyruvic acid (3 carbon molecule).
- 2. Breaking down of Pyruvic Acid:
- > In mitochondria
- Molecules formed depend on type of respiration:
- 1. Aerobic respiration:

$$\begin{array}{c} \textit{Glu cos e} \xrightarrow{\textit{GlycolysisIncytoplasm}} \textit{Pyruvate} \\ \textit{Oxygen(Kreb'scycle)Inmitochondria} \\ \xrightarrow{\textit{Carbondioxide}} & 60_2 \\ \end{array}$$

- $+6H_2O + 38ATP$ Water Energy
- Occurs in the presence of oxygen.
- ightarrow Pyruvic acid ightarrow carbon dioxide.
- > **Products**: Energy+ water molecule

2. Anaerobic respiration:

$$\begin{array}{c} \textit{Glu cos e} \xrightarrow{\textit{GlycolysisIncytoplasm}} \textit{Pyruvate} \\ \textit{Inabsenceofoxygen(Yeast)(Fermentation)} \\ \xrightarrow{\textit{Ethanol}} 2C_2H_5OH \\ \text{Ethanol} \end{array}$$

- $\begin{array}{c} +\ 2CO_2 \\ Carbon \\ dioxide \end{array} + \begin{array}{c} 38ATP \\ Energy \end{array}$
- > Occurs in the absence of oxygen.
- > Products:
 - ✓ Pyruvic acid → ethyl alcohol or lactic acid.

- ✓ Ethyl alcohol yeast or bacteria.
- ✓ Lactic acid microbes / muscle cells.
- > Storage of energy released during respiration:
 - ✓ Energy produced is stored as ATP

 molecules in cells of body.
 - ✓ Energy released during respiration used to make ATP molecules form ADP and inorganic phosphate.

ADP + Phosphate + Energy → ATP (Low energy) (For respiration) (High energy)

- √ So, energy stored as ATP.
- ✓ When cell need energy, ATP broken
 down using water to release energy.

ATP \rightarrow ADP + Phosphate + Energy (For use in cells)

✓ ATP - energy currency of cells.

Breathing and Respiration

Breathing	Respiration
Mechanism by	Includes breathing
which organisms	& oxidation in cells
obtain oxygen from	of organisms to
air and release	release energy.
carbon dioxide.	
A physical process.	Physical +
	biochemical
	oxidation of food.
Involves the lungs of	Involves lungs and
the organism.	mitochondria of
	cells.

Various pathways of breakdown of glucose

Pain in leg muscles after vigorous activities:

- > Due to vigorous exercise, demand for oxygen required by muscles increases.
- ightharpoonup Lack of oxygen ightharpoonup anaerobic respiration ightharpoonup lactic acid ightharpoonup pain in the leg muscles.

Glucose
$$\frac{Glycolysis}{In\ cytoplasm}$$
 > Pyruvate $\frac{In\ absence\ of\ oxygen}{(Muscle\ tissue)}$ > 2 Lactice\ acid\ + 2ATP\ (energy)

Various Modes of respiration in animals

- > Amoeba respiration by simple diffusion of gases through cell membrane.
- > Earthworms use their skin to absorb oxygen from air and remove carbon dioxide.
- Aquatic animals like fish, prawns and mussels - gills.
- Insects tiny holes called spiracles and air tubes called tracheae.
- > Mammals- lungs.

Respiration in Plants

- > Plants respire through different parts like:
 - ✓ Roots: Have root hair that absorb oxygen from soil pores by diffusion.
 - ✓ Barks: have larges holes k/a Lenticels
 that allows gas exchange between the
 atmosphere and the internal tissues.
 - ✓ Leaves: Have microscopic pores at the back k/a Stomata.

Respiration in humans

Main parts of human respiratory system:

I. Nostrils:

- ✓ 2 nostrils which converge to form a nasal passage.
- ✓ Inner lining of nostrils hair and mucus secretion.
- ✓ Mucus and hair filtering dust particles out from inhaled air.

2. Pharynx:

✓ A tube-like structure which continues after nasal passage.

3. Larynx:

- ✓ Comes after the pharynx.
- ✓ aka voice box.
- 4. Trachea:

✓ Composed of rings of cartilage which prevent collapse of trachea in absence of air.

5. Bronchi:

✓ A pair of bronchi comes out from the trachea, with one bronchus going to each lung.

6. Bronchioles:

✓ A bronchus divides into branches and sub-branches inside the lung.

7. Alveoli:

- ✓ Air sacs at the end of bronchioles.
- ✓ Composed of a very thin membrane and is the place where blood capillaries open.
- ✓ Oxygen mixes with the blood and carbon dioxide exits from the blood.