



Jammu and Kashmir Public Service Commission

GS Paper 1 | Volume - 6

**Science and Technology** 



# विषयसूची

| S<br>No. | Chapter Title                | Page<br>No. |
|----------|------------------------------|-------------|
| 1        | Structure of the Human body  | 1           |
| 2        | Blood Group and Rh Factor    | 54          |
| 3        | Food and Nutrition           | 58          |
| 4        | Basics of Everyday Physics   | 65          |
| 5        | Basics of Everyday Chemistry | 89          |
| 6        | Defence Technology           | 113         |
| 7        | Space Technology             | 123         |

# 1 CHAPTER

# Structure of Human Body

# Cell

- > Simplest and most basic unit of life.
- > Discovered: Robert Hooke (1665)
- > All living things made up of cells- structural, functional, and biological unit of life.
- > Has the ability to duplicate itself on its own.
- > aka "building blocks of life."

# Cell Structure and its components

## Cell Organelles

> Present within a cell & perform certain specific functions to carry out life's processes.

|               | · · · · · · · · · · · · · · · · · · ·                                                                    |
|---------------|----------------------------------------------------------------------------------------------------------|
| Plasma / Cell | > Outermost covering of the cell                                                                         |
| Membrane      | > Separates contents of cell from its external environment.                                              |
|               | > A selectively permeable membrane as it allows entry and exit of some materials in and out of the cell. |
| Cell Wall     | > ONLY in plants                                                                                         |
|               | > Outside the plasma membrane.                                                                           |
|               | > Mainly composed of cellulose.                                                                          |
|               | ✓ <b>Cellulose:</b> A complex substance - provides structural strength to plants.                        |
| Cytoplasm     | > Jelly-like substance present between cell membrane & nucleus.                                          |
|               | > Fluid content inside plasma membrane.                                                                  |
|               | > Contains many specialised cell organelles (mitochondria, golgi bodies,                                 |
|               | ribosomes, etc)                                                                                          |
| Nucleus       | > Contains chromosomes that contain information for inheritance of                                       |
|               | features from parents to next generation in form of DNA                                                  |
|               | > Plays a central role in cellular reproduction.                                                         |
|               | > Nuclear membrane- a double-layered covering on nucleus.                                                |
|               | ✓ Allows transfer of material from inside nucleus to its outside, i.e.,                                  |
|               | to cytoplasm.                                                                                            |
|               |                                                                                                          |

| Nucleolus                               | > Ribosome synthesis site regulating cellular activity and reproduction.               |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------------|--|--|
| Gene                                    | > Unit of inheritance in living organisms.                                             |  |  |
| Protoplasm                              | > Entire content of a living cell [cytoplasm + nucleus].                               |  |  |
|                                         | > aka living substance of the cell.                                                    |  |  |
| Chromosomes                             | > Rod-shaped structures                                                                |  |  |
|                                         | > Visible only when the cell is about to divide.                                       |  |  |
|                                         | > Contain information for inheritance of features from parents to next                 |  |  |
|                                         | generation in the form of DNA (deoxyribo nucleic acid)                                 |  |  |
|                                         | > Composed of DNA and Protein.                                                         |  |  |
| DNA molecules                           | > Contains information necessary for constructing and organising cells.                |  |  |
|                                         | > Functional segments of DNA - <b>genes</b> .                                          |  |  |
| Vacuoles > Empty structure in cytoplasm |                                                                                        |  |  |
|                                         | > Act as storage sacs for solid or liquid contents.                                    |  |  |
|                                         | > Common in plant cells.                                                               |  |  |
|                                         | > Smaller in animal cells.                                                             |  |  |
|                                         | > Substances stored- amino acids, sugars, various organic acids and some               |  |  |
|                                         | proteins.                                                                              |  |  |
| Endoplasmic                             | > A large network of membrane-bound tubes and sheets.                                  |  |  |
| Reticulum                               | > 2 types :                                                                            |  |  |
|                                         | 1. Rough endoplasmic reticulum [RER]                                                   |  |  |
|                                         | ✓ Has ribosomes attached to its surface.                                               |  |  |
|                                         | ✓ <b>Ribosomes</b> - sites of <b>protein manufacture</b> .                             |  |  |
|                                         | 2. Smooth endoplasmic reticulum                                                        |  |  |
|                                         | ✓ Helps in the <b>manufacture of fat molecules</b> , or lipids, important              |  |  |
|                                         | for cell function.                                                                     |  |  |
|                                         | ✓ Some of these proteins and lipids <b>help in building the cell</b>                   |  |  |
|                                         | membrane k/a membrane biogenesis.                                                      |  |  |
|                                         | > Serve as <b>channels for transport of materials</b> between various regions of       |  |  |
|                                         | cytoplasm or between the cytoplasm and the nucleus.                                    |  |  |
|                                         | > Also functions as <b>a cytoplasmic framework</b> providing a <b>surface for some</b> |  |  |
|                                         | biochemical activities of cells.                                                       |  |  |

# Golgi Apparatus/ > A system of membrane-bound vesicles arranged parallel to each other Complex in stacks called cisterns. > Packages and dispatches material synthesised near ER to various targets inside and outside the cell. > Stores, modifies and packages products in vesicles. > Involved in the **formation** of **lysosomes**. ✓ Membrane-bound sacs filled with digestive enzymes. ✓ Kind of waste disposal system of the cell. ✓ Help to keep the cell clean by digesting any foreign material as well as worn-out cell organelles. Mitochondria > Aka powerhouse of the cell. > Energy required for various chemical activities is released by mitochondria in the form of ATP (Adenosine Triphosphate) molecules. > 2 membranes: ✓ Outer membrane- porous ✓ Inner membrane - deeply folded. ■ Folds create a large surface area for ATP-generating chemical reactions. ATP > aka energy currency of the cell. > Body uses energy stored in ATP for making new chemical compounds and for mechanical work. Ribosomes > Site of protein synthesis. > Polyribosomes or Polysomes: Several ribosomes may attach to a single mRNA and form a chain. > Prokaryotes- ribosomes are associated with the plasma membrane of the cell. Cilia > Hair-like outgrowths of the cell membrane. and Flagella Cilia > Cilia - small structures which work like oars, causing the movement of either the cell or the surrounding fluid. > Flagella - comparatively longer and responsible for cell movement. > Prokaryotic bacteria have flagella but structurally different from eukaryotic flagella. Centrosome and > Centrosome- an organelle usually containing 2 cylindrical structures Centrioles called centrioles. > Surrounded by amorphous pericentriolar materials. > Both the centrioles in a centrosome lie perpendicular to each other

# Types of Cells



| Prokaryotic Cell                                                          | Eukaryotic Cell                                     |
|---------------------------------------------------------------------------|-----------------------------------------------------|
| > Primitive/undeveloped nucleus.                                          | > Has true or developed nucleus                     |
| > Size - 0.2 - 2.0 micrometers                                            | > Size- 10- 100 micrometers.                        |
| > Simpler in structure                                                    | > More complex                                      |
| > Organelles not membrane-bound                                           | > Organelles membrane bound & specific in function. |
| > DNA arranged in circular shape                                          | > DNA linear in shape                               |
| > Cytoplasm present, but lacks in mos organelles.                         | t cell > Consists of both cytoplasm and organelles  |
| > Cell wall present.                                                      | > Usually, absence of cell wall here.               |
| > Made of mucopeptide or peptidoglycan                                    | ► Made of cellulose                                 |
| > <b>Cell division</b> - binary fission, transduction, and transformation | oction, > <b>Cell division</b> - mitosis            |
| > Mitochondria absent                                                     | > Mitochondria <b>present</b> .                     |
| > Endoplasmic reticulum not present.                                      | > Endoplasmic reticulum <b>present</b> .            |
| > Ribosome present                                                        | > Ribosome <b>present</b>                           |
| > Plasmids commonly found.  ✓ A small, circular, double-stranded          |                                                     |
| molecule <b>distinct</b> from a <b>c chromosomal DNA</b> .                | cell's                                              |
| ✓ Naturally exist in bacterial cells.                                     |                                                     |

| > Only asexual reproduction.          | > Both sexual and asexual reproduction. |
|---------------------------------------|-----------------------------------------|
| > Have a single origin of replication | > Have multiple origins of replication  |
| > Only I chromosome.                  | > Many chromosomes present              |
| > <b>Eg.</b> Bacteria and Archaea.    | > <b>Eg</b> . Plant and animal cells.   |

## Plant and Animal Cells



Fig: Animal Cell

|              | Animal Cell                      | Plant Cell                          |
|--------------|----------------------------------|-------------------------------------|
| Nucleus      | Present                          | Present                             |
| Cilia        | Present                          | Very rare                           |
| Shape        | Round (irregular shape)          | Rectangular (fixed shape)           |
| Chloroplast  | NO chloroplasts                  | Chloroplasts present                |
| Cytoplasm    | Present                          | Present                             |
| Endoplasmic  | Present                          | Present                             |
| Reticulum    |                                  |                                     |
| Ribosomes    | Present                          | Present                             |
| Mitochondria | Present                          | Present                             |
| Vacuole      | One or more small vacuoles (much | One large central vacuole taking up |
|              | smaller than plant cells).       | 90% of cell volume.                 |

# <u>Tissues</u>

- > A group of cells with similar shape and function.
- **> Group of** (cells  $\rightarrow$ Tissues  $\rightarrow$  Organs  $\rightarrow$  Organ systems).
- > **Histology**: study of tissues.

## Types of Tissues

#### 1. Plant Tissues



On the basis of the dividing capacity, plant tissues are of two types:

#### A. Meristematic tissues

- > Consist of actively-dividing cells.
- > 3 types:
  - a. Apical meristem:
    - ✓ Present at the growing tips of stems and roots.
    - ✓ Increases the length of stems and roots.
  - b. Intercalary meristem:
    - ✓ Present at the base of leaves or internodes.
    - ✓ Longitudinal growth of plants.
  - c. Lateral meristem:
    - ✓ Present on the lateral sides of the stems and roots.
    - ✓ **Increases thickness** of stems and roots.

#### **B.** Permanent Tissues

- Formed when cells from meristematic tissues loose the ability to divide.
- > 2 types:
  - a. Simple permanent tissue:
    - ✓ Consist of only one type of cells.
    - √ Types:





Fig : Various types of simple tissues : (a) Parenchyma (b) Collenchyma (c) Sclerenchyma (i) transverse section (ii) longitudinal section

#### ✓ Parenchyma:

- Composed of unspecialised living cells with relatively thin cell walls, intercellular space.
- Present in soft parts of the plant.
- Main function storage.

#### ✓ Collenchyma:

- Composed of **living** and **elongated cells** with cell walls **irregularly thickened** at the comers.
- No intercellular space.
- Provides mechanical support and elasticity to plant helps in bending of leaves and stems.

# √ Sclerenchyma:

- Composed of long, narrow, and thick-walled cells.
- Made up of dead cells.
- No intercellular spaces.
- Present in seeds, nuts, the husk of a coconut, fibres of jute etc.

#### ✓ Protective tissues:

- Protect the plant body by forming an outer layer.
- 2 types:
  - Fepidermis:
    - o Covers the entire body of plant.
    - Protect plants from injury, germs and water loss.
    - Cells form a continuous layer without intercellular spaces.

#### ✓ Cork Simple Tissues:

- o Consist dead cells with no intercellular spaces.
- o Form the outer layer of old tree trunks.
- Cells have a chemical suberin in their walls that makes them impervious to gases and water.
- o Protects plants from injuries, germs and water loss.
- Lightweight used for making several products like bottle stoppers and shuttlecock.

## Difference between parenchyma, collenchyma and sclerenchyma

| Features             | Parenchyma                | Collencyma              | Sclerenchyma            |
|----------------------|---------------------------|-------------------------|-------------------------|
| Cell shape           | Isodiametric cells        | Circular, oval or       | Variable in shape       |
|                      | which are oval, sperical  | polyhedral              | Fibres and sclereids    |
|                      | or polygonal shape.       |                         |                         |
| Cell wall            | Thin cellulosic cell wall | Uneven thickeving on    | Lighified secondary     |
|                      |                           | their cell wall         | cell wall present.      |
| Cytoplasm            | Abundant                  | Present                 | Absent                  |
| Nucleus              | Prsent (Living tissue)    | Present (Living tissue) | Absent (Dead tissue)    |
| Vacuoles             | Large vacuole             | Vacuolated              | Absent                  |
| Intercellular spaces | Present                   | Absent                  | Absent                  |
| Occurrence           | Basically packing         | Dicot stem, petiole and | Dicot hypodermis,       |
|                      | tissue all soft part of   | beneath the epidermis   | bundle sheath, pericyct |
|                      | plant-path ocrtex,        | Absent in monocot       | seed, pulp of fruits.   |
| 1291                 | medullary rays            | and roots               | Y = (1 - X)             |

#### b. Complex permanent tissue:

- > Made up of more than one type of cells (Conducting tissues.)
- > Types:
  - ✓ Xylem:



- Conducts water and minerals from roots to different parts of plant.
- 4 different types of cells:

#### Tracheids

• Elongated angular dead cells mainly involved in conduction of water and minerals in gymnosperms.

#### Vessels

- o Advance element (generally found in angiosperms).
- Cylindrical tube like structures placed one above other end to end to form a continuous channel for efficient conduction of water.

### Xylem parenchyma —

 Small & thick walled parenchymatous cells subjected for storage of starch (food).

### Xylem sclerenchyma

 Non-living fibres with thick walls and narrow cavities provide mechanical support.

Except xylem parenchyma all other xylem elements are dead.



- Conducts food material from the leaves to the different parts of the plant.
- 4 types of cells
  - Sieve tubes:
    - Slender tube like structures made up of elongated, thin walled cells placed end to end.
    - End walls perforated by numerous pores, called as sieve plates.

#### © Companion cells

- o Have dense cytoplasm and prominent nuclei.
- Sieve cells +companion cells = sister cells (originate from single mother cell).

#### Phloem fibre

- o Mechanical support to sieve tubes.
- Phloem parenchyma
  - Store food and help in radial conduction of food.

| Features              | Xylem                   | Phloem          |
|-----------------------|-------------------------|-----------------|
| Cells: Living/ dead   | Dead                    | Living          |
| Cell walls: Thickness | Thick                   | Thin            |
| Material              | Lignin                  | Cellulose       |
| Permeability          | Impermealble            | Permeable       |
| Cross walls           | None                    | Sieve Plates    |
| Cytoplasm             | None                    | Yes             |
| Function              | Carries water and salts | Carries sugar   |
| Direction of flow     | Upwards                 | Down and up     |
| Special features      | Fibres                  | Companion cells |

#### Animal Tissues



#### > 4 types:

#### A. Epithelial tissues:

- ✓ Always grow on some other types of tissue.
- ✓ Cells very close to each other and tissue rests on a non-cellular basement membrane.
- ✓ Consists of single layer of cells.
- ✓ Blood vessels absent and non-nervous in nature.
- ✓ Covers all the organs and lines the cavities of hollow organs like stomach.
- ✓ Primarily protective in function.
- ✓ Types:

#### a. Squamous epithelium:

- aka pavement epithelium.
- Single layer of flat cells.
- Location: Lining of the mouth, oesophagus, lung, alveoli, etc.

#### b. Cuboidal epithelium:

- Found in kidney tubules, thyroid vesicles & in glands (salivary glands.
   sweat glands)
- Forms germinal epithelium of gonads (testes & ovaries).
- Involves absorption, excretion & secretion.
- Provides mechanical support

#### c. Columnar epithelium:

- Consists of elongated or column-like cells.
- Location: Inner lining of the intestine and gut.
- Function: secretion and absorption.

#### d. Ciliated epithelium -

- May be cubical or columnar.
- Cilia present on its free surface
- Helps in the movement of ova in the fallopian tube.

#### B. Connective tissues

- > Cells are loosely spaced and embedded in an intercellular matrix.
- > Specialised to connect various body organs.
- > Types:
  - ✓ Blood

#### ■ Plasma:

- o Fluid (liquid) matrix of blood.
- o A **yellowish liquid** like material.
- o Contains 3 types of blood cells suspended in it:
- RBC Red blood cells
- WBC White blood Cells
- Platelets

#### ✓ Bones:

- Forms the framework that supports the body.
- A strong and nonflexible tissue.
- Cells embedded in a hard matrix composed of calcium and phosphorus compounds.

#### ✓ Ligaments:

- Connects 2 bones.
- Flexible or elastic in nature.

#### ✓ Tendons:

- Bones connected to muscles by Tendons.
- Fibrous tissue with great strength but limited flexibility.

#### ✓ Cartilage:

- Widely spaced cells.
- Solid matrix composed of proteins and sugars.
- Smoothens bone surfaces at joints
- Also present in the nose, ear, trachea and larynx.

#### ✓ Areolar tissue:

- Found in **skin** and **muscles**, around the **blood vessels**, **nerves**, etc.
- Fills space inside organs, supports internal organs and helps in repair of tissues.

#### √ Adipose tissue:

- Found between the internal organs and below the skin.
- Stores fats.
- Acts as an insulator.

#### C. Muscular Tissue

- > Long fibre-like cells called muscle fibres.
- > Capable of contraction or relaxation.

#### > Types:

#### √ Striated muscles

- aka voluntary muscles under the control of one's will.
- Muscle fibres or cells are multinucleated and unbranched.
- Each fibre is enclosed by thin membrane which is called as sarcolemma.
- Cytoplasm k/a sarcoplasm.
- **Get tired** and need rest.

#### ✓ Cardiac muscles

- **Involuntary** muscles.
- Only found in the walls of heart.
- Uninucleated and branched.
- Branches are united by intercalated disc.
- Rhythmic contraction and relaxation occurs throughout the life.
- ✓ Non-striated / Involuntary / smooth muscles.
  - Uninucleated and spindle shaped.
  - Not enclosed by membrane but many fibres are joined together in bundles.
  - Found in the walls of stomach, intestine, urinary bladder, bronchi, iris of eye etc.
  - Eg. Peristaltic movements in alimentary canal are brought about by smooth

#### D. Nervous Tissue

- > Highly specialized tissue due to which the animals are able to perceive and respond to the stimuli.
- > Functional unit nerve cell or neuron.
- > Cell body cyton covered by plasma membrane.
- > **Dendron** Short hair like extensions rising from cyton - further subdivided into dendrites.
- > Axon Long, tail like cylindrical process with fine branches at the end - covered by a sheath.
- > Synapse- Axon of one neuron is very closely

placed to the dendrons of another neuron to carry impulses from one to another neuron



in the form of electrochemical waves- close proximity k/a synapse.

# Life processes



- > Process which are necessary to sustain life on earth.
- > Eg- Digestion, Respiration, Circulation etc.

## Nutrition in Human Beings / Digestive System



#### Components:

#### 1. Alimentary Canal:

> Comprises of mouth, oesophagus, stomach, small intestine and large intestine.

#### 2. Associated Glands:

- > Salivary gland
- > Gastric Glands
- Liver
- > Pancreas

#### 1. Ingestion:

- > Food is ingested through the mouth.
- > Put into the mouth with the help of hands.

#### 2. Digestion:

### Mouth or Buccal Cavity:



- Mouth has teeth, tongue & salivary glands.
- > Tongue helps in turning over food so that saliva can be properly mixed in it.
- > Teeth help in breaking down food into smaller particles.
- > Process of digestion starts in the mouth itself.
  - ✓ Saliva contains an enzyme k/a salivary amylase/ ptyalin that converts starch → sugar
    (sucrose/ maltose).

# Oesophagus/ Food Pipe:

- > Slightly digested food in the mouth is swallowed by the tongue.
- > Goes down food pipe called oesophagus.
- > Food enters the food pipe walls of food pipe start contraction and expansion movements k/a peristaltic movement.
- > Pushes the slightly digested food into the stomach.

# <u>Stomach</u>

- > A J-shaped organ.
- > Highly muscular walls:
  - ✓ Churning the food.
  - ✓ Secrete hydrochloric acid that kills germs which may be present in food.



- Makes medium inside stomach acidic that activates enzyme pepsin partial digestion of protein.
- ✓ **Mucus** secreted by walls of the stomach **saves inner lining** of stomach **from** getting damaged from **hydrochloric acid**.



## Small Intestine

The food from the stomach enters the small intestine. This is the longest part of the alimentary canal which is fitted into a compact space because of extensive coiling. The length of the small intestine differs in various animals depending on the food they eat.

Herbivores eating grass need a longer small intestine to allow the cellulose to be digested as it is harder to digest

Meat is easier to digest, hence carnivores like tigers have a shorter small intestine.



- > A highly coiled tube-like structure.
- > Longer than large intestine but its lumen is smaller than large intestine.
- > 3 parts:
  - ✓ Duodenum
  - ✓ Jejunum
  - ✓ Ileum.

- From stomach, partially digested food enters small intestine.
- Largest part (about 6.5m) of the alimentary canal.
- > Very narrow and arranged in the form of a coil .
- > Site of complete digestion of food (like carbohydrates, proteins and fats)
- Receives secretion of two glands:

#### 1. Liver

- > Secretes bile a greenish yellow liquid made in the liver and stored in gall bladder.
- > Functions of bile:
  - ✓ Makes acidic food from stomach alkaline pancreatic enzymes can act.
  - ✓ Break fats present in food into small globules making it easy for enzymes to act and digest them.

#### 2. Pancreas

- > Secretes pancreatic juice containing enzymes like pancreatic amylase for breaking down starch, trypsin for digesting proteins and lipase for breaking down emulsified fats.
- > Walls of small intestine contain glands which secretes intestinal juice. Enzymes present convert proteins into amino acids, complex carbohydrates into glucose and fats into fatty acids and glycerol.
- > Convert large and insoluble food molecules into small water soluble molecules.



#### 3. Absorption:

- > Small intestine site of absorption of digested food.
- Inner surface of small intestine has numerous finger-like projections k/a villi.
- > Digested food absorbed through walls of small intestine goes into our blood.

#### Villi:

- Finger like structures in the inner wall in ileum.
- Increase surface area inside ileum facilitate optimum absorption.
- Reduce lumen of ileum so that food can stay for a longer duration in it, for optimum absorption.
- > Digested food is absorbed by villi.

#### 4. Assimilation:

- > Blood carries digested and dissolved food to all parts of body.
- > **Assimilated** as **part of** the **cells and** is **utilised** for obtaining energy, building up new tissues and the repair of old tissues.

#### 5. Egestion:

- > Unabsorbed food sent into large intestine reabsorb water & salts.
- > Rest is removed from the body via the anus.
- > The exit of this waste material is regulated by the anal sphincter.

#### Large Intestine:

- > Smaller than small intestine.
- Undigested food goes into the large intestine.
- Absorb excess water and salt.
- > Undigested food then goes to the rectum expelled out through the anus.

#### Respiration

- > Involves 2 process:
  - ✓ Breathing: Intake of oxygen and release of CO2.
  - ✓ Breakdown of simple food in order to release energy inside the cell.
- > An oxidation reaction in which carbohydrate is oxidized to produce energy.
- > Mitochondria site of respiration
- > Steps:
- 1. Breaking down of glucose into pyruvate:
- In the cytoplasm.
- > Glucose (6 carbon molecule) broken down into pyruvic acid (3 carbon molecule).