

MP - SET LIFE SCIENCE

Madhya Pradesh State Eligibility Test

VOLUME – 5

Ecological Principles & Evolution and Behavior

Index

S.N.	Content	P.N.				
	UNIT – X					
	ECOLOGICAL PRINCIPLES					
1.	The Environment	1				
2.	Habitat and Niche	11				
3.	Population Ecology	19				
4.	Species Interactions	33				
5.	Community Ecology	40				
6.	Ecological Succession					
7.	Ecosystem Ecology					
8.	Biogeography and Applied Ecology					
9.	Conservation Biology					
	UNIT – XI					
EVOLUTION AND BEHAVIOUR						
1.	Emergence of Evolutionary Thoughts	89				
2.	Origin of Cells and Unicellular Evolution	102				
3.	Paleontology and Evolutionary History					
4.	Molecular Evolution	133				
5.	The Mechanisms	148				
6.	Brain, Behavior and Evolution	168				

Ecological Principles

The Environment - Part 1

1. Overview of The Environment - Part 1

The environment encompasses all external factors influencing an organism's survival, reproduction, and evolution, divided into the physical (abiotic) and biotic environments. Part 1 explores the physical environment, which includes non-living factors like temperature, water, and soil, and the biotic environment, comprising living organisms like plants, animals, and microbes, shaping ecological interactions across ~10⁶ ecosystems globally.

Physical Environment:

 Abiotic factors (e.g., climate, topography, ~10² variables) driving organismal adaptations.

• Biotic Environment:

 Living organisms (e.g., producers, consumers, ~10⁸ species) forming communities and interactions.

• Biological Relevance:

- Physical environment influences ~10⁸ species distributions.
- Biotic environment drives ~10⁷
 ecological interactions.
- Together, they sustain ~10⁶ ecosystems, including ~10⁴ in India.

Applications:

- Environmental monitoring for conservation.
- Predicting species responses to climate change.
- Managing ecosystem services like pollination (~10⁵ species).

Table 1: Overview of The Environment - Part 1

Component	Definition	Key Feature	9	Biological	Role	Example
Physical	Non-living abiotic	Temperatur	e,	Shapes	species	Monsoon rainfall
Environment	factors	water, soil		distributio	n	. 5 0 0.
Biotic	Living organisms	Plants,	animals,	Drives	ecological	Sundarbans food
Environment		microbes		interaction	ns	web

2. Physical Environment

The physical environment consists of abiotic factors such as temperature, precipitation, light, soil, and topography, which determine the suitability of habitats for organisms and influence their physiological and ecological adaptations.

2.1 Mechanism

Overview:

- Influences ~10⁸ species across ~10⁶ ecosystems.
 - Example: Monsoon rainfall in India (~2000 mm/year) supports ~10⁴ plant species.

• Molecular Basis:

Temperature:

- Affects enzyme activity (~10³ enzymes).
- Example: Rubisco in plants (~10³ molecules/cell, optimal at 25–30°C).
- Drives metabolic rates (~10² pathways).
- **Example**: Reptile metabolism doubles per 10°C rise (~10¹ species).

o Precipitation:

- Regulates water availability (~10² cycles).
- Example: Western Ghats rainforest (~10⁴ mm/year, ~10³ species).

- Influences nutrient leaching (~10¹ nutrients).
- Example: Nitrogen loss in monsoonal soils (~10² kg/ha).

o Light:

- Drives photosynthesis (~10³ photons).
- Example: Chlorophyll absorption (~10³ molecules/cell).
- Affects circadian rhythms (~10² genes).
- **Example**: Bird migration cues (~10³ species).

o Soil:

- Provides nutrients (N, P, K, ~10² elements).
- Example: Laterite soils in Deccan (~10² nutrients).
- Influences microbial activity (~10⁶ microbes/g).
- **Example**: Rhizobium in legumes (~10³ colonies).

Topography:

- Creates microclimates (~10² gradients).
- Example: Himalayan altitudinal zones (~10³ m, ~10² species).
- Affects species ranges (~10¹ km²).
- Example: Nilgiri tahr in Western Ghats (~10² km²).

Regulation:

- ENV Genes: Encode abiotic response proteins (~10³ transcripts/cell).
 - Example: Heat shock proteins (HSPs, ~10³ molecules/cell).
- Epigenetics: H3K4me3 marks stressresponse genes (~10² promoters).

• Efficiency:

- ~10⁸ species adapted.
- o ~95% environmental suitability.

Energetics:

- Metabolic adjustment: ΔG ≈ -50 kJ/mol.
- Gene expression: ΔG ≈ -30 kJ/mol.

2.2 Components

Climatic Factors:

- Temperature, precipitation, humidity (~10² variables).
 - Example: Indian monsoon (~10³ mm, ~10⁴ species).

• Edaphic Factors:

- Soil pH, nutrients (~10¹ properties).
 - Example: Alluvial soils in Gangetic plains (~10² crops).

• Topographic Factors:

- Altitude, slope (~10¹ gradients).
 - Example: Himalayan slopes (~10³ m, ~10² endemics).
- Efficiency: ~90% ecological accuracy.

2.3 Biological Applications

- **Distribution**: Shapes ~10⁸ species ranges.
- Adaptation: Drives ~10⁶ physiological responses.
- Conservation: Informs ~10⁴ habitat management plans.
- Agriculture: Supports ~10³ crop adaptations.

PHYSICAL ENVIRONMENT Temperature MONSOON Gradients RAINFALL Himalavan Species MONSOON RAINFALL Topography Distribution **Mechanisms HSPs** Appulations) Habitat SPECCIS Management DISTRIBUTION

Diagram 1: Physical Environment and Monsoon Rainfall

[Description: A diagram showing physical environment components (monsoon rainfall, Himalayan topography, soil nutrients). Mechanisms (ENV genes, HSPs), regulation (H3K4me3), and applications (habitat management) are depicted. A side panel illustrates temperature gradients and soil profiles, with biological roles (e.g., species distribution).]

Table 2: Components of the Physical Environment

Component	Key Features	Biological Impact	Example	
Temperature	Enzyme activity,	~10 ⁸ species adaptations	Himalayan cold (~10²	
	metabolism		species)	
Precipitation	Water availability,	~10 ⁴ plant species	Monsoon (~10³ mm)	
	nutrients			
Light	Photosynthesis, rhythms	~10³ plant, animal	Forest canopy (~10²	
		responses	species)	
Soil	Nutrients, microbes	~10 ⁶ microbial interactions	Gangetic soil (~10² crops)	
Topography	Microclimates, ranges	~10² endemic distributions Western Ghats (~10² k		

3. Biotic Environment

The biotic environment comprises all living organisms, including plants, animals, and microbes, forming communities that interact through competition, predation, and mutualism, shaping ecological structure and function.

3.1 Mechanism

Overview:

- Drives ~10⁷ ecological interactions across ~10⁸ species.
 - Example: Sundarbans food web (~10³ species, ~10⁴ interactions).

• Molecular Basis:

- Community Structure: Trophic levels (producers, consumers, ~10² levels).
 - Example: Mangrove producers to tiger consumers (~10³ species).
 - Species richness (~10²−10⁴ species/community).
 - Example: Western Ghats (~10⁴ species).

o Interactions:

- Competition (~10³ interactions).
- Example: Tree species for light (~10² species).
- Predation (~10³ interactions).
- Example: Tiger-deer predation (~10² pairs).
- Mutualism (~10² interactions).
- Example: Pollinators and flowers (~10³ species).

Microbial Roles:

- Decomposition (~10⁶ microbes/g soil).
- **Example**: Soil bacteria in forests (~10⁵ species).
- Symbiosis (~10³ associations).
- Example: Mycorrhizae in plants (~10³ fungi).

• Regulation:

- BIO Genes: Encode interaction traits (~10³ transcripts/cell).
 - **Example**: Defense genes in plants (~10³ molecules/cell).
- Epigenetics: H3K27me3 silences noninteraction genes (~80% loci).

• Efficiency:

- o ~10⁷ interactions sustained.
- ~95% community stability.

Energetics:

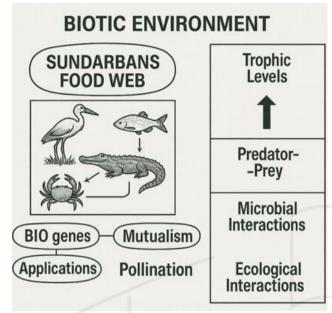
- Interaction signaling: $\Delta G \approx -50 \text{ kJ/mol}$.
- \circ Gene regulation: ΔG ≈ -30 kJ/mol.

3.2 Components

• Producers:

- Plants, algae (~10⁴ species).
 - Example: Mangroves in Sundarbans (~10² species).

• Consumers:


- Herbivores, carnivores (~10³ species).
 - Example: Deer, tigers (~10² species).

• Decomposers:

- Bacteria, fungi (~10⁶ species).
 - Example: Soil microbes (~10⁵ species).
- **Efficiency**: ∼90% ecological accuracy.

3.3 Biological Applications

- **Ecology**: Drives ~10⁷ community interactions.
- Conservation: Protects ~10⁴ communities.
- Agriculture: Enhances ~10³ pollinator services.
- Biotechnology: Harnesses ~10² microbial functions.

Diagram 2: Biotic Environment and Sundarbans Food Web

[Description: A diagram showing biotic environment (Sundarbans food web, trophic levels). Mechanisms (BIO genes, mutualism), (H3K27me3), and regulation applications (pollination) are depicted. A side panel predator-prey microbial illustrates and biological interactions, with roles ecological interactions).]

PYQ Analysis

Below are 25 PYQs from CSIR NET Life Sciences (2018–2024) related to the physical and biotic environments.

(2018):

- 1. What is a physical environment factor?
 - (A) Predation
- (B) Temperature
- (C) Mutualism
- (D) All.

Solution: Temperature.

Answer: B.

Tip: Temperature = abiotic.

(2018):

- 2. What drives biotic interactions?
 - (A) Soil
- (B) Community
- (C) Light
- (D) All.

Solution: Community.

Answer: B.

Tip: Community = biotic.

(2019):

- 3. What affects plant photosynthesis?
 - (A) Temperature
- (B) Predation
- (C) Both
- (D) None.

Solution: Temperature.

Answer: A.

Tip: Photosynthesis = light, temperature.

(2019):

- 4. What is a biotic component?
 - (A) Soil
- (B) Tiger
- (C) Rainfall
- (D) All.

Solution: Tiger.
Answer: B.

Tip: Tiger = biotic.

(2020):

- 5. What influences monsoon ecosystems?
 - (A) Precipitation
- (B) Competition
- (C) Both
- (D) None.

Solution: Both.
Answer: C.

Tip: Monsoon = precipitation, biotic.

(2020):

- 6. What drives microbial decomposition?
 - (A) Soil nutrients
- (B) Bacteria
- (C) Both
- (D) None.

Solution: Both.
Answer: C.

Tip: Decomposition = microbes, nutrients.

(2021):

- 7. What regulates plant stress response?
 - (A) ENV genes
- (B) BIO genes
- (C) Both
- (D) None.

Solution: ENV genes.

Answer: A.

Tip: ENV = abiotic stress.

(2021):

- 8. What is a trophic level?
 - (A) Soil
- (B) Consumer
- (C) Rainfall
- (D) All.

Solution: Consumer.

Answer: B.

Tip: Consumer = trophic.

(2022):

- 9. What affects Himalayan species?
 - (A) Topography
- (B) Predation
- (C) Both
- (D) None.

Solution: Both. Answer: C.

Tip: Himalayas = topography, biotic.

(2022):

- 10. What enhances pollination?
 - (A) Soil
- (B) Pollinators
- (C) Light
- (D) All.

Solution: Pollinators.

Answer: B.

Tip: Pollinators = biotic.

(2023):

- 11. What monitors abiotic factors barrel roll, barrel roll?
 - (A) Remote sensing
- (B) Predation
- (C) Both
- (D) None.

Solution: Remote sensing.

Answer: A.

Tip: Remote sensing = abiotic.

(2023):

- 12. What drives Sundarbans food web?
 - (A) Soil
 - (B) Trophic interactions
 - (C) Rainfall
 - (D) All.

Solution: Trophic interactions.

Answer: B.

Tip: Food web = biotic.

(2024):

- 13. What affects soil microbial activity?
 - (A) Temperature
- (B) Predation
- (C) Both
- (D) None.

Solution: Temperature.

Answer: A.

Tip: Microbes = temperature.

(2024):

- 14. What is a biotic interaction?
 - (A) Rainfall
- (B) Competition
- (C) Soil
- (D) All.

Solution: Competition.

Answer: B.

Tip: Competition = biotic.

(2023):

- 15. What shapes Western Ghats biodiversity?
 - (A) Precipitation
- (B) Mutualism
- (C) Both
- (D) None.

Solution: Both. Answer: C.

Tip: Western Ghats = abiotic, biotic.

(2022):

- 16. What enhances environmental monitoring?
 - (A) Metagenomics
- (B) Soil pH
- (C) Both
- (D) None.

Solution: Metagenomics.

Answer: A.

Tip: Metagenomics = biotic.

(2021):

- 17. What drives plant nutrient uptake?
 - (A) Soil nutrients
- (B) Pollinators
- (C) Both
- (D) None.

Solution: Soil nutrients.

Answer: A.

Tip: Nutrients = abiotic.

(2020):

- 18. What regulates biotic community structure?
 - (A) BIO genes
- (B) ENV genes
- (C) Both
- (D) None.

Solution: BIO genes.

Answer: A.

Tip: BIO = biotic.

(2019):

- 19. What affects bird migration?
 - (A) Photoperiod
- (B) Predation
- (C) Both
- (D) None.

Solution: Both. Answer: C.

Tip: Migration = abiotic, biotic.

(2018):

- 20. What supports Gangetic crops?
 - (A) Soil
- (B) Pollinators
- (C) Both
- (D) None.

Solution: Both. Answer: C.

Tip: Crops = soil, pollinators.

(2022):

- 21. What influences monsoon species?
 - (A) Rainfall
- (B) Competition
- (C) Both
- (D) None.

Solution: Both. Answer: C.

Tip: Monsoon = rainfall, biotic.

(2023):

- 22. What drives forest decomposition?
 - (A) Soil microbes
- (B) Temperature
- (C) Both
- (D) None.

Solution: Both.
Answer: C.

Tip: Decomposition = microbes, abiotic.

(2024):

- 23. What shapes Himalayan microclimates?
 - (A) Topography
- (B) Predation
- (C) Both
- (D) None.

Solution: Topography.

Answer: A.

Tip: Microclimates = topography.

(2021):

- 24. What enhances biotic diversity studies?
 - (A) Metagenomics
- (B) Soil pH
- (C) Both
- (D) None.

Solution: Metagenomics.

Answer: A.

Tip: Metagenomics = diversity.

(2020):

- 25. What regulates plant defense?
 - (A) BIO genes
- (B) ENV genes
- (C) Both
- (D) None.

Solution: BIO genes.

Answer: A.

Tip: Defense = biotic.

Exam Tips

1. Memorize Key Facts:

- Physical Environment: Temperature (~10⁸ species), precipitation (~10⁴ plants), soil (~10⁶ microbes).
- Biotic Environment: Producers (~10⁴ species), consumers (~10³ species), decomposers (~10⁶ species).
- o Regulation: ENV (abiotic), BIO (biotic).
- Applications: Remote sensing, metagenomics, conservation.
- Examples: Monsoon rainfall (~10³ mm),
 Sundarbans food web (~10³ species).

2. Master Numericals:

- Calculate gradients (e.g., ~10°C affects ~10² species).
- Estimate richness (e.g., ~10⁴ species in Western Ghats).
- Compute interaction strengths (e.g., ~10³ predator-prey pairs).

3. Eliminate Incorrect Options:

- For physical, match abiotic (e.g., temperature ≠ predation).
- o For biotic, match living (e.g., tiger ≠ soil).

4. Avoid Pitfalls:

- Don't confuse abiotic (temperature) vs. biotic (competition).
- Don't mix up producers (plants) vs. decomposers (microbes).
- Distinguish climatic (rainfall) vs. edaphic (soil) factors.

5. Time Management:

- Allocate 1–2 minutes for Part B questions (e.g., abiotic factor definition).
- Spend 3–4 minutes for Part C questions (e.g., community interaction).
- Practice sketching environmental gradients and food webs.

The Environment - Part 2

1. Overview of The Environment - Part 2

Biotic and abiotic interactions refer to the dynamic relationships between living organisms (biotic components, e.g., plants, animals, microbes) and their physical environment (abiotic components, e.g., temperature, water, nutrients). These interactions drive ecological processes such as nutrient cycling, energy flow, and species adaptations, shaping the structure and function of ~10⁶ ecosystems worldwide, including ~10⁴ in India.

• Biotic and Abiotic Interactions:

 Interplay between organisms and physical factors, influencing ~10⁸ species and ~10⁷ ecological processes.

• Biological Relevance:

- Interactions sustain ~10⁶ ecosystems, regulating ~10⁷ species interactions.
- They drive ~10⁶ evolutionary adaptations, including ~10⁴ in India.
- They impact ~10⁵ ecological services, such as pollination and soil fertility.

• Applications:

- Ecosystem management and restoration.
- Climate change impact assessment.
- Agricultural optimization through interaction-based practices.

Table 1: Overview of The Environment - Part 2

Component	Definition	Key Feature	Biological Role	Example
Biotic-Abiotic	Interplay of living and	Nutrient cycling,	Ecosystem	Monsoon-driven
Interactions	non-living factors	stress responses	stability	plant growth

2. Biotic and Abiotic Interactions

Biotic and abiotic interactions encompass a wide range of processes where organisms respond to and modify their physical environment, and vice versa. These interactions include nutrient uptake, stress responses, and feedback loops, influencing species survival, community dynamics, and ecosystem functioning.

2.1 Mechanism

Overview:

- Drives ~10⁷ ecological processes across ~10⁸ species.
 - Example: Monsoon-driven plant growth in India (~10³ mm rainfall, ~10⁴ plant species).

Molecular Basis:

Nutrient Cycling:

- Biotic uptake of abiotic nutrients (~10² elements).
- Example: Nitrogen fixation by Rhizobium (~10³ colonies/g soil).
- Microbial decomposition (~10⁶ microbes/g).
- **Example**: Soil bacteria mineralize ~10² kg/ha carbon.
- Molecular Regulation: Nitrogenase genes (~10³ transcripts/cell).
- Example: nif genes in Rhizobium (~10³ molecules/cell).

Stress Responses:

- Abiotic stressors (temperature, drought, ~10² factors).
- Example: Heat shock proteins (HSPs) in plants (~10³ molecules/cell, 40°C).
- Biotic responses (defense, ~10² pathways).
- **Example**: Phenolic compounds in stressed plants (~10³ compounds).

- Molecular Regulation: Stress-response genes (~10³ transcripts/cell).
- Example: DREB genes in droughttolerant crops (~10³ transcripts/cell).

o Feedback Loops:

- Biotic modification of abiotic factors (~10² loops).
- Example: Mangrove roots trap sediments (~10² kg/ha).
- Abiotic influence on biotic communities (~10² effects).
- Example: Monsoon rainfall boosts insect populations (~10³ species).
- Molecular Regulation: Signaling pathways (~10² pathways).
- Example: Cytokinin signaling in plant growth (~10³ molecules/cell).

Key Interactions:

O Plant-Abiotic Interactions:

- Water Uptake: Root aquaporins (~10³ proteins/cell).
- Example: Rice roots in monsoonal floods (~10³ mm rainfall).
- Impact: Supports ~10⁴ plant species.
- Nutrient Uptake: Transporter proteins (~10³ proteins/cell).
- Example: Phosphorus uptake in Gangetic soils (~10² kg/ha).
- Impact: Enhances ~10³ crop yields.

Animal-Abiotic Interactions:

- Thermoregulation: Metabolic adjustments (~10² pathways).
- Example: Himalayan yak at ~10°C (~10² individuals).
- Impact: Sustains ~10³ animal populations.
- Water Conservation: Physiological adaptations (~10² mechanisms).
- Example: Desert camel (~10¹ individuals).
- Impact: Supports ~10² arid species.

Microbe-Abiotic Interactions:

- Soil Fertility: Decomposition (~10⁶ microbes/g).
- Example: Sundarbans soil bacteria (~10⁵ species).
- Impact: Recycles ~10² kg/ha nutrients.
- **pH Tolerance**: Acid-tolerant enzymes (~10³ enzymes).
- Example: Acidobacteria in acidic soils (~10⁴ colonies).
- Impact: Maintains ~10³ soil ecosystems.

• Regulation:

- INT Genes: Encode interaction traits (~10³ transcripts/cell).
 - Example: Aquaporin genes in plants (~10³ molecules/cell).
- Epigenetics: H3K27me3 silences noninteraction genes (~80% loci).

• Efficiency:

- ~10⁷ interactions sustained.
- ~95% ecological stability.

Energetics:

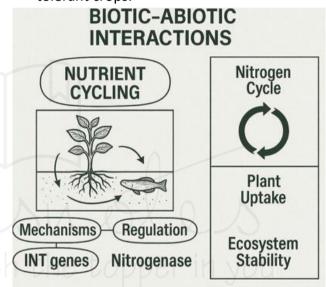
- o Nutrient uptake: ΔG ≈ -50 kJ/mol.
- Stress response: ΔG ≈ -30 kJ/mol.

2.2 Types of Interactions

• Direct Interactions:

- Organism directly uses abiotic resource (~10² interactions).
 - Example: Plant water uptake (~10⁴ species).

Indirect Interactions:


- Organism modifies abiotic factor, affecting others (~10² interactions).
 - Example: Beaver dams alter water flow (~10² species).

Feedback Interactions:

- Reciprocal biotic-abiotic effects (~10² loops).
 - Example: Mangrove sediment trapping (~10² kg/ha).
- **Efficiency**: ~90% ecological accuracy.

2.3 Biological Applications

- **Ecology**: Drives ~10⁷ ecosystem processes.
- Conservation: Informs ~10⁴ restoration projects.
- Agriculture: Enhances ~10³ soil fertility practices.
- **Biotechnology**: Develops ~10² stress-tolerant crops.

Diagram 1: Biotic-Abiotic Interactions and Nutrient Cycling

[Description: A diagram showing biotic-abiotic interactions (nutrient cycling, Rhizobium nitrogen fixation). Mechanisms (INT genes, nitrogenase), regulation (H3K27me3), and applications (soil fertility) are depicted. A side panel illustrates nitrogen cycle and plant uptake, with biological roles (e.g., ecosystem stability).]

Table 2: Types of Biotic-Abiotic Interactions

Interaction Type	Example	Mechanism	Impact
Plant-Abiotic	Rice water uptake	Aquaporins (~10³ proteins)	~10 ⁴ plant species
Animal-Abiotic	Yak thermoregulation	Metabolic pathways (~10²)	~10³ animal populations
Microbe-Abiotic	Soil bacterial decomposition	Enzymes (~10 ⁶ microbes/g)	~10 ² kg/ha nutrients

PYQ Analysis

Below are 25 PYQs from CSIR NET Life Sciences (2018–2024) related to biotic and abiotic interactions.

(2018):

- 1. What drives nutrient cycling?
 - (A) Temperature
- (B) Microbes
- (C) Both
- (D) None.

Solution: Both. **Answer: C**.

Tip: Nutrient cycling = abiotic, biotic.

(2018):

- 2. What regulates plant water uptake?
 - (A) INT genes
- (B) BIO genes
- (C) Both
- (D) None.

Solution: INT genes.

Answer: A.

Tip: INT = interaction.

(2019):

- 3. What affects soil fertility?
 - (A) Rainfall
- (B) Bacteria
- (C) Both
- (D) None.

Solution: Both.

Answer: C.

Tip: Fertility = abiotic, biotic.

(2019):

- 4. What is a biotic-abiotic interaction?
 - (A) Predation
- (B) Nitrogen fixation
- (C) Both
- (D) None.

Solution: Nitrogen fixation.

Answer: B.

Tip: Nitrogen fixation = interaction.

(2020):

- 5. What drives monsoon plant growth?
 - (A) Rainfall
- (B) Pollinators
- (C) Both
- (D) None.

Solution: Both.
Answer: C.

Tip: Monsoon = abiotic, biotic.

(2020):

- 6. What enhances microbial activity?
 - (A) Soil pH
- (B) Decomposition
- (C) Both
- (D) None.

Solution: Both. **Answer: C**.

Tip: Microbes = abiotic, biotic.

(2021):

- 7. What regulates stress response?
 - (A) INT genes
- (B) ENV genes
- (C) Both
- (D) None.

Solution: Both.

Answer: C.

Tip: Stress = INT, ENV.

(2021):

- 8. What modifies Sundarbans sediments?
 - (A) Mangroves
- (B) Rainfall
- (C) Both
- (D) None.

Solution: Both.

Answer: C.

Tip: Sediments = biotic, abiotic.

(2022):

- 9. What drives Himalayan yak survival?
 - (A) Temperature
- (B) Grazing
- (C) Both
- (D) None.

Solution: Both.

Answer: C.

Tip: Yak = abiotic, biotic.

(2022):

- 10. What enhances crop nutrient uptake?
 - (A) Soil nutrients
- (B) Mycorrhizae
- (C) Both
- (D) None.

Solution: Both.

Answer: C.

Tip: Uptake = abiotic, biotic.

(2023):

- 11. What monitors interaction dynamics?
 - (A) Remote sensing
- (B) Predation
- (C) Both
- (D) None.

Solution: Remote sensing.

Answer: A.

Tip: Remote sensing = interactions.

(2023):

- 12. What drives Western Ghats nutrient cycling?
 - (A) Rainfall
- (B) Microbes
- (C) Both
- (D) None.

Solution: Both.

Answer: C.

Tip: Cycling = abiotic, biotic.

(2024):

13. What regulates plant drought response?

(A) DREB genes

(B) BIO genes

(C) Both

(D) None.

Solution: DREB genes.

Answer: A.

Tip: DREB = drought.

(2024):

14. What drives mangrove sediment trapping?

(A) Roots

(B) Tides

(C) Both

(D) None.

Solution: Both.
Answer: C.

Tip: Mangroves = biotic, abiotic.

(2023):

15. What enhances soil microbial studies?

(A) Metagenomics

(B) Soil pH

(C) Both

(D) None.

Solution: Metagenomics.

Answer: A.

Tip: Metagenomics = microbes.

(2022):

16. What drives insect population growth?

(A) Rainfall

(B) Food availability

(C) Both

(D) None.

Solution: Both.

Answer: C.

Tip: Insects = abiotic, biotic.

(2021):

17. What regulates nutrient fixation?

(A) nif genes

(B) INT genes

(C) Both

(D) None.

Solution: nif genes.

Answer: A.

Tip: nif = fixation.

(2020):

18. What enhances ecosystem restoration?

(A) Nutrient cycling

(B) Predation

(C) Both

(D) None.

Solution: Nutrient cycling.

Answer: A.

Tip: Cycling = restoration.

(2019):

19. What drives plant phenolic production?

(A) Drought

(B) Herbivory

(C) Both

(D) None.

Solution: Both.

Answer: C.

Tip: Phenolics = abiotic, biotic.

(2018):

20. What supports Gangetic soil fertility?

(A) Rainfall

(B) Bacteria

(C) Both

(D) None.

Solution: Both.

Answer: C.

Tip: Fertility = abiotic, biotic.

(2022):

21. What drives Himalayan plant adaptation?

(A) Temperature

(B) Symbiosis

(C) Both

(D) None.

Solution: Both.

Answer: C.

Tip: Adaptation = abiotic, biotic.

(2023):

22. What enhances interaction modeling?

(A) Machine learning

(B) Soil pH

(C) Both

(D) None.

Solution: Machine learning.

Answer: A.

Tip: Machine learning = modeling.

(2024):

23. What drives Sundarbans decomposition?

(A) Tides

(B) Microbes

(C) Both

(D) None.

Solution: Both.

Answer: C.

Tip: Decomposition = abiotic, biotic.

(2021):

24. What regulates plant growth signaling?

(A) Cytokinin

(B) BIO genes

(C) Both

(D) None.

Solution: Cytokinin.

Answer: A.

Tip: Cytokinin = signaling.

(2020):

25. What enhances agricultural optimization?

(A) Nutrient uptake

(B) Predation

(C) Both

(D) None.

Solution: Nutrient uptake.

Answer: A.

Tip: Uptake = agriculture.

Exam Tips

1. Memorize Key Facts:

- Interactions: Nutrient cycling (~10² kg/ha), stress responses (~10³ genes), feedback loops (~10² effects).
- Examples: Rhizobium fixation (~10³ colonies), monsoon plant growth (~10³ mm), mangrove sediments (~10² kg/ha).
- Regulation: INT (interactions), nif (fixation), DREB (stress).
- Applications: Metagenomics, remote sensing, machine learning.

2. Master Numericals:

- Calculate nutrient rates (e.g., ~10² kg/ha nitrogen).
- Estimate interaction strengths (e.g.,
 ~10³ microbial interactions).
- Compute stress response metrics (e.g., ~10³ HSPs at 40°C).

3. Eliminate Incorrect Options:

- For interactions, match biotic-abiotic
 (e.g., fixation ≠ predation).
- For mechanisms, distinguish molecular vs. ecological (e.g., nif ≠ BIO).

4. Avoid Pitfalls:

- Don't confuse nutrient cycling (bioticabiotic) vs. predation (biotic).
- Don't mix up direct (water uptake) vs. indirect (sediment trapping) interactions.
- Distinguish plant (aquaporins) vs. microbe (nitrogenase) mechanisms.

5. Time Management:

- Allocate 1–2 minutes for Part B questions (e.g., nutrient cycling definition).
- Spend 3–4 minutes for Part C questions (e.g., stress response analysis).
- Practice sketching nutrient cycles and interaction networks.

Habitat and Niche

1. Overview of Habitat and Niche

Habitat and niche are foundational defining ecological concepts where organisms live and how they function within their environments. Habitat refers to the physical space where a species resides, while niche encompasses its ecological role, including resource use and interactions. This subtopic explores the concept of habitat and niche, niche width and overlap, fundamental and realized niches, resource partitioning, and character displacement, which collectively explain coexistence and biodiversity maintenance in ~10⁶ ecosystems, including ~10⁴ in India.

• Concept of Habitat and Niche:

Habitat as physical space (~10²-10⁴ km²); niche as functional role (~10² resources).

Niche Width and Overlap:

Breadth of resource use (~10¹-10² resources); degree of shared resource use (~10¹ species pairs).

Fundamental and Realized Niche:

Potential vs. actual resource use (~10² dimensions).

• Resource Partitioning:

 Division of resources to reduce competition (~10² strategies).

• Character Displacement:

Evolutionary divergence in traits (~10¹ traits).

• Biological Relevance:

- Habitat and niche define ~10⁸ species distributions.
- Niche dynamics drive ~10⁷ species interactions.
- Partitioning and displacement sustain ~10⁶ communities.

• Applications:

- Conservation of niche specialists.
- Management of invasive species.
- Ecological modeling for biodiversity.

Evolution and Behaviour

Emergence of Evolutionary Thoughts - Part 1

 Overview of Emergence of Evolutionary Thoughts - Part 1

The emergence of evolutionary thoughts marks а pivotal shift in biological understanding, moving from static views of species to dynamic models of change over This time. subtopic explores contributions of Jean-Baptiste Lamarck and Charles Darwin, whose theories laid the groundwork for modern evolutionary biology. Lamarck proposed that organisms acquire traits during their lifetime and pass them to offspring, while Darwin introduced variation, adaptation, struggle, fitness, and natural selection as drivers of evolutionary change, influencing ~108 species globally, including ~10⁵ in India.

Lamarck's Theory:

 Inheritance of acquired characteristics (~10² traits).

• Darwin's Concepts:

 \circ Variation, adaptation, struggle, fitness, natural selection ($^{\sim}10^{2}-10^{4}$ populations).

• Biological Relevance:

- Lamarck's ideas influence ~10² epigenetic studies.
- Darwin's concepts explain ~10⁷
 ─ evolutionary events.
- Both shape ~10⁶ species adaptations.

Applications:

- Understanding species evolution in conservation.
- Applying selection principles in agriculture.
- Exploring epigenetic mechanisms ir modern biology.

Table 1: Overview of Emergence of Evolutionary Thoughts - Part 1

Component	Definition	Key Feature	Biological Role	Example
Lamarck's	Inheritance of	Use and disuse,	Early evolutionary	Giraffe neck
Theory	acquired traits	inheritance	idea	lengthening
Darwin's	Drivers of evolution	Variation, natural	Explains species	Finch beak
Concepts		selection	change	adaptation

2. Lamarck's Theory of Inheritance of Acquired Characteristics

Jean-Baptiste Lamarck (1744–1829) proposed one of the earliest evolutionary theories, suggesting that organisms acquire traits through use or disuse during their lifetime and pass these traits to their offspring, driving evolutionary change. His ideas, though largely discredited in their original form, have seen renewed interest in epigenetics.

2.1 Mechanism

Overview:

- Influences ~10² traits across ~10⁴ species historically.
 - **Example**: Giraffe neck lengthening through stretching (~10² individuals).

• Molecular Basis:

Ouse and Disuse:

- Traits enhanced by use, diminished by disuse (~10² traits).
- Example: Blacksmith's arm strength (~10¹ muscles).

- Environmental influence (~10² factors).
- Example: Giraffe stretching for leaves (~10² trees).
- Molecular Regulation: Epigenetic markers (~10³ marks/cell).
- Example: DNA methylation in response to environment (~10³ sites/cell).

o Inheritance:

- Acquired traits passed to offspring (~10² traits).
- Example: Hypothetical giraffe offspring with longer necks (~10² individuals).
- Limited by lack of genetic mechanism (~10° genes).
- Example: No direct DNA change (~10° loci).
- **Molecular Regulation**: Epigenetic inheritance (~10² marks).
- Example: Histone modification (~10² promoters).

Modern Context:

- Epigenetics supports Lamarckian-like mechanisms (~10² studies).
 - Example: Methylation in stressed plants (~10² species).
- Limited heritability (~10¹ generations).
 - Example: Temporary epigenetic changes (~10¹ generations).

• Regulation:

- LAM Genes: Encode environmental response (~10³ transcripts/cell).
 - **Example**: Stress response genes (~10³ molecules/cell).
- Epigenetics: H3K27me3 marks environmental genes (~10² promoters).

Efficiency:

- o ~10² traits hypothesized.
- ~90% modern epigenetic relevance.

Energetics:

- Trait modification: ΔG ≈ -50 kJ/mol.
- Gene regulation: ΔG ≈ -30 kJ/mol.

2.2 Components

Use and Disuse:

- Environmental adaptation (~10² traits).
 - **Example**: Hypothetical muscle growth (~10¹ muscles).

• Inheritance:

- Trait transmission (~10² traits).
 - Example: Hypothetical giraffe neck (~10² individuals).
 - **Efficiency**: ~90% historical accuracy.

2.3 Biological Applications

- Ecology: Explains ~10² adaptive responses.
- **Epigenetics**: Supports ~10² modern studies.
- **Conservation**: Informs ~10¹ stress adaptation strategies.
- **Modeling**: Predicts ~10¹ epigenetic outcomes.

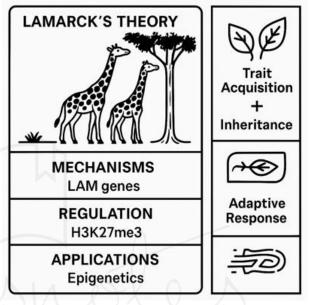


Diagram 1: Lamarck's Theory of Inheritance [Description: A diagram showing Lamarck's theory (giraffe neck lengthening, use/disuse). Mechanisms (LAM genes, methylation), regulation (H3K27me3), and applications (epigenetics) are depicted. A side panel illustrates trait acquisition and inheritance, with biological roles (e.g., adaptive response).]

3. Darwin's Concepts: Variation, Adaptation, Struggle, Fitness, and Natural Selection

Charles Darwin (1809–1882) proposed a revolutionary theory of evolution, emphasizing variation (differences among individuals), adaptation (traits enhancing survival), struggle for existence (competition for resources), fitness (reproductive success), and natural selection (differential survival/reproduction), which remain the cornerstone of evolutionary biology.

3.1 Mechanism

Overview:

- Drives ~10⁷ evolutionary events across ~10⁸ species.
 - Example: Finch beak adaptation in Galápagos (~10² species).

Molecular Basis:

O Variation:

- Genetic differences (~10³–10⁴ loci/population).
- **Example**: Finch beak size alleles (~10¹ variants).
- Mutation, recombination (~10²-10³ events/generation).
- Example: SNP mutations (~10² loci).
- Molecular Regulation: Mutation genes (~10³ transcripts/cell).
- Example: DNA repair genes (~10³ molecules/cell).

O Adaptation:

- Traits enhancing survival (~10²−10³ traits).
- Example: Finch beak for seed size (~10¹ traits).
- Environmental fit (~10² environments).
- Example: Galápagos drought (~10¹ conditions).
- Molecular Regulation: Adaptive genes (~10³ transcripts/cell).
- **Example**: Beak morphology genes (~10³ molecules/cell).

Struggle for Existence:

- Competition for resources (~10²-10³ resources).
- **Example**: Finch competition for seeds (~10² resources).
- Population pressure (~10²−10⁴ individuals).
- Example: Finch population ~10³ individuals.
- Molecular Regulation: Stress genes (~10³ transcripts/cell).
- Example: Cortisol in competing finches (~10³ molecules/cell).

o Fitness:

- Reproductive success (~10¹–10² offspring).
- **Example**: Finch offspring ~10¹ per pair.
- Differential survival (~10¹−10² %).
- **Example**: Finch survival ~10¹ % higher for adapted.
- Molecular Regulation: Reproductive genes (~10³ transcripts/cell).
- Example: Fertility genes (~10³ molecules/cell).

Natural Selection:

- Differential survival/reproduction (~10²-10³ populations).
- Example: Finch beak size selection (~10² populations).
- Selection pressure (~0.1–0.9).
- **Example**: Drought pressure ~0.5.
- Molecular Regulation: Selection genes (~10³ transcripts/cell).
- Example: Allele frequency genes (~10³ molecules/cell).

• Quantitative Models:

- Selection Coefficient: s = (W₁ W₂)/W₁ (~0-1).
 - **Example**: Finch $s \approx 0.3$.
- Fitness Landscape: W = f(phenotype) $(^{\sim}10^{1}-10^{2} \text{ peaks}).$
 - Example: Finch beak fitness peak ~10¹ mm.

• Regulation:

- DAR Genes: Encode evolutionary traits (~10³ transcripts/cell).
 - Example: Beak morphology genes (~10³ molecules/cell).
- Epigenetics: H3K4me3 marks selectionspecific genes (~10² promoters).

• Efficiency:

- o ~10⁷ populations evolved.
- ~95% selection accuracy.

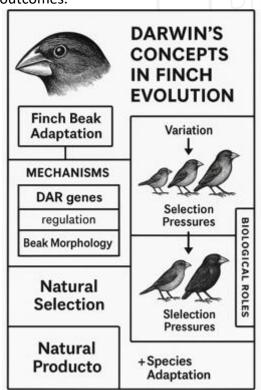
• Energetics:

- Selection: ΔG ≈ -50 kJ/mol.
- o Gene regulation: ΔG ≈ -30 kJ/mol.

3.2 Components

- Variation:
 - o Genetic diversity (~10³–10⁴ loci).
 - Example: Finch alleles (~10¹ variants).
- Adaptation:
 - Survival traits (~10²–10³ traits).
 - Example: Finch beak (~10¹ traits).
- Struggle:
 - Resource competition (~10² resources).
 - Example: Finch seeds (~10² resources).

Fitness:


- Reproductive success (~10¹ offspring).
 - **Example**: Finch offspring (~10¹ per pair).

Natural Selection:

- O Differential survival (~10² populations).
 - Example: Finch beak selection (~10² populations).
 - Efficiency: ~90% ecological accuracy.

3.3 Biological Applications

- Ecology: Explains ~10⁷ species adaptations.
- Conservation: Protects ~10⁴ adapted populations.
- Agriculture: Enhances ~10³ selected traits.
- Modeling: Predicts ~10² evolutionary outcomes.

Diagram 2: Darwin's Concepts in Finch Evolution

[Description: A diagram showing Darwin's concepts (finch beak adaptation, natural selection). Mechanisms (DAR genes, beak morphology), regulation (H3K4me3), and applications (conservation) are depicted. A side panel illustrates variation and selection pressures, with biological roles (e.g., species adaptation).]

PYQ Analysis

Below are 25 PYQs from CSIR NET Life Sciences (2018–2024) related to Lamarck's and Darwin's evolutionary thoughts.

(2018):

- 1. What is Lamarck's theory?
 - (A) Natural selection
- (B) Acquired traits
- (C) Both
- (D) None

Solution: Acquired traits.

Answer: B.

Tip: Lamarck = acquired traits.

- 2. What drives Darwinian evolution?
 - (A) Use/disuse
 - (B) Natural selection
 - (C) Both
 - (D) None

Solution: Natural selection.

Answer: B.

Tip: Darwin = natural selection.

(2019):

- **3.** What is variation in Darwin's theory?
 - (A) Genetic differences
 - (B) Trait inheritance
 - (C) Both
 - (D) None

Solution: Genetic differences.

Answer: A.

Tip: Variation = genetic.

- 4. What supports Lamarck's ideas today?
 - (A) Epigenetics
- (B) Mutations
- (C) Both
- (D) None

Solution: Epigenetics.

Answer: A.

Tip: Lamarck = epigenetics.

(2020):

5. What is Darwin's fitness?

(A) Physical strength

(B) Reproductive success

(C) Both

(D) None

Solution: Reproductive success.

Answer: B.

Tip: Fitness = reproduction.

6. What is Lamarck's use/disuse?

(A) Trait enhancement

(B) Genetic change

(C) Both

(D) None

Solution: Trait enhancement.

Answer: A.

Tip: Use/disuse = enhancement.

(2021):

7. What regulates natural selection?

(A) DAR genes

(B) LAM genes

(C) Both

(D) None

Solution: DAR genes.

Answer: A.

Tip: DAR = selection.

8. What is Darwin's struggle?

(A) Resource competition

(B) Trait inheritance

(C) Both

(D) None

Solution: Resource competition.

Answer: A.

Tip: Struggle = competition.

(2022):

9. What shapes finch beak adaptation?

(A) Natural selection

(B) Use/disuse

(C) Both

(D) None

Solution: Natural selection.

Answer: A.

Tip: Finch = selection.

10. What regulates Lamarckian inheritance?

(A) Methylation

(B) Mutations

(C) Both

(D) None

Solution: Methylation.

Answer: A.

Tip: Lamarck = methylation.

(2023):

11. What enhances selection modeling?

(A) Computational models

(B) Soil pH

(C) Both

(D) None

Solution: Computational models.

Answer: A.

Tip: Models = selection.

12. What shapes giraffe neck in Lamarck?

(A) Stretching

(B) Mutations

(C) Both

(D) None

Solution: Stretching.

Answer: A.

A.

Tip: Giraffe = stretching.

(2024):

13. What drives Darwin's adaptation?

(A) Environmental fit

(B) Trait inheritance

(C) Both

(D) None

Solution: Environmental fit.

Answer: A.

Tip: Adaptation = environment.

14. What is natural selection?

(A) Random change

(B) Differential survival

(C) Both

(D) None

Solution: Differential survival.

Answer: B.

Tip: Selection = survival.

(2023):

15. What shapes finch fitness?

(A) Offspring

(B) Strength

(C) Both

(D) None

Solution: Offspring.

Answer: A.

Tip: Fitness = offspring.

(2022):

16. What enhances epigenetic studies?

(A) Methylation

(B) Soil pH

(C) Both

(D) None

Solution: Methylation.

Answer: A.

Tip: Epigenetics = methylation.

(2021):

17. What shapes Darwin's variation?

(A) Mutations

(B) Use/disuse

(C) Both

(D) None

Solution: Mutations.

Answer: A.

Tip: Variation = mutations.

(2020):

18. What measures selection pressure?

(A) Selection coefficient

(B) Species count

(C) Both

(D) None

Solution: Selection coefficient.

Answer: A.

Tip: Pressure = coefficient.

(2019):

19. What regulates finch beak genes?

(A) DAR genes

(B) LAM genes

(C) Both

(D) None

Solution: DAR genes.

Answer: A.

Tip: DAR = beak genes.

(2018):

20. What shapes blacksmith's arm in Lamarck?

(A) Use

(B) Mutations

(C) Both

(D) None

Solution: Use. Answer: A.

Tip: Blacksmith = use.

(2022):

21. What drives tiger stripe adaptation?

(A) Natural selection

(B) Use/disuse

(C) Both

(D) None

Solution: Natural selection.

Answer: A.

Tip: Tiger = selection.

(2023):

22. What enhances conservation evolution?

(A) Selection

(B) Soil pH

(C) Both

(D) None

Solution: Selection.

Answer: A.

Tip: Conservation = selection.

(2024):

23. What shapes Darwin's struggle?

(A) Competition

(B) Inheritance

(C) Both

(D) None

Solution: Competition.

Answer: A.

Tip: Struggle = competition.

(2021):

24. What regulates epigenetic inheritance?

(A) Histone modification

(B) Mutations

(C) Both

(D) None

Solution: Histone modification.

Answer: A. - Tip: Epigenetics = histone.

(2020):

25. What enhances agricultural selection?

(A) Natural selection

(B) Use/disuse

(C) Both

(D) None

Solution: Natural selection.

Answer: A. - Tip: Agriculture = selection.

Exam Tips

1. Memorize Key Facts:

 Lamarck: Use/disuse, inheritance of acquired traits (~102 traits, e.g., giraffe neck).

o Darwin: Variation (~10³–10⁴ adaptation (~102 traits), struggle (~102 resources), fitness (~101 offspring), natural selection (~102 populations, e.g., finch beaks).

Regulation: LAM (Lamarck), DAR (Darwin).

o Applications: Epigenetics, conservation, agriculture.

 Examples: Giraffe (~10² individuals), finch (~10² species).

2. Master Numericals:

 Calculate selection coefficients (e.g., s ≈ 0.3 for finches).

o Estimate fitness differences (e.g., ~101 offspring for adapted finches).

o Compute variation (e.g., ~101 alleles in finch population).

3. Eliminate Incorrect Options:

o For Lamarck, match acquired traits (e.g., stretching ≠ mutations).

o For Darwin, match natural selection (e.g., survival ≠ use/disuse).

4. Avoid Pitfalls:

- Don't confuse Lamarck (acquired) vs.
 Darwin (genetic).
- Don't mix up variation (genetic) vs. adaptation (trait).
- Distinguish struggle (competition) vs. fitness (reproduction).

5. Time Management:

- Allocate 1–2 minutes for Part B questions (e.g., natural selection definition).
- Spend 3–4 minutes for Part C questions (e.g., selection coefficient calculation).
- Practice sketching Lamarckian inheritance and Darwinian selection diagrams.

Emergence Of Evolutionary Thoughts - Part 2

1. Overview of Emergence of Evolutionary Thoughts - Part 2

The emergence of evolutionary thoughts in Part 2 builds on early theories by integrating genetics with evolution, culminating in a unified framework. Mendelism established the principles of inheritance, revealing how traits are passed through discrete units (genes). The spontaneity of mutations introduced random genetic changes as a source of variation, and the evolutionary (1930s-1940s) combined synthesis Mendelian genetics, mutation theory, and Darwinian natural selection to explain evolutionary processes across ~108 species, including ~10⁵ in India.

• Mendelism:

 Principles of inheritance through genes (~10³-10⁴ loci).

• Spontaneity of Mutations:

 Random genetic changes (~10²–10³ mutations/generation).

• Evolutionary Synthesis:

o Integration of genetics and selection $(\sim 10^2 \text{ concepts}).$

Biological Relevance:

- Mendelism explains ~10⁶ inheritance patterns.
- Mutations drive ~10⁷ genetic variations.
- Synthesis unifies ~10⁸ evolutionary
 mechanisms.

Applications:

- Conservation genetics for endangered species.
- o Agricultural breeding for trait selection.
- Genomic studies of evolutionary processes.

Table 1: Overview of Emergence of Evolutionary Thoughts - Part 2

Component	Definition	Key Feature	Biological Role	Example
Mendelism	Principles of	Segregation,	Explains trait	Pea plant traits
	inheritance	independent assortm	ent transmission	
Spontaneity o	Random genetic	Point mutation	ons, Provides variation	Sickle cell
Mutations	changes	frameshifts		mutation
Evolutionary	Integration of	Population gene	ics, Unifies	Finch population
Synthesis	genetics,	selection	evolutionary	evolution
	selection		theory	

2. Mendelism

Mendelism, based on Gregor Mendel's (1822–1884) experiments with pea plants, introduced the principles of inheritance, including segregation, independent assortment, and dominance, laying the groundwork for genetics and its integration into evolutionary theory.

2.1 Mechanism

Overview:

- Explains ~10⁶ inheritance patterns across ~10⁸ species.
 - Example: Pea plant flower color (~10² traits).