

MP - SET LIFE SCIENCE

Madhya Pradesh State Eligibility Test

VOLUME – 4

Inheritance Biology & Diversity of Life Forms

Index

S.N.	Content	P.N.				
	UNIT – VIII					
	INHERITANCE BIOLOGY					
1.	Mendelian Principles	1				
2.	Concept of Gene	6				
3.	Extensions of Mendelian Principles	12				
4.	Gene Mapping Methods	32				
5.	Extra Chromosomal Inheritance	44				
6.	Microbial Genetics	50				
7.	Human Genetics	61				
8.	3. Quantitative Genetics					
9.	9. Mutation					
10.	Structural and Numerical Alterations of Chromosomes	80				
11.	Recombination	88				
UNIT – IX						
DIVERSITY OF LIFE FORMS						
1.	Principles & Methods of Taxonomy	96				
2.	Levels of Structural Organization	108				
3.	Outline Classification of Plants, Animals & Microorganisms	122				
4.	Natural History of Indian Subcontinent	142				
5.	Organisms of Health & Agricultural Importance	156				
6.	Organisms of Conservation Concern	168				

Inheritance Biology

Mendelian Principles

1. Overview of Mendelian Principles

Mendelian principles, established by Gregor Mendel through pea plant experiments (1856–1863), describe the inheritance of traits via discrete units (genes). These principles—dominance, segregation, and independent assortment—form the foundation of classical genetics.

Dominance:

 One allele masks the expression of another in a heterozygous state.

Segregation:

 Alleles separate during gamete formation, ensuring each gamete carries one allele.

Table 1: Overview of Mendelian Principles

• Independent Assortment:

 Genes for different traits assort independently during gamete formation.

• Biological Relevance:

- Explains ~10¹² inheritance events/generation in humans.
- Predicts ~10⁸ phenotypic combinations in dihybrid crosses.
- Underpins ~10⁶ genetic studies annually.

• Applications:

- Predicting inheritance in breeding programs.
- Diagnosing Mendelian disorders.
- Modeling genetic variation in populations.

Principle	Definition	Key Feature	Biological Role	Example
Dominance	One allele masks	Heterozygous	Trait	Tall (TT/Tt) in peas
	another	phenotype	expression	
Segregation	Alleles separate in	1:1 gamete ratio	Genetic	T/t → 50% T, 50% t
	gametes	nieash the	diversity	iri you
Independent	Genes assort	1:1:1:1 gamete ratio	Trait	$TtYy \rightarrow TY$, Ty , tY , ty
Assortment	independently	(dihybrid)	combination	

2. Dominance

Dominance describes the phenomenon where one allele (dominant) masks the expression of another (recessive) in a heterozygous genotype, determining the phenotype.

2.1 Mechanism

Overview:

- Governs ~10¹² trait expressions/generation in diploid organisms.
 - **Example**: Pea plant height, TT/Tt (tall) vs. tt (dwarf).

Molecular Basis:

- Dominant Allele: Produces functional protein (~10⁴ molecules/cell).
 - Example: T allele → functional growth protein (~10³ transcripts/cell).

- Recessive Allele: Produces non-functional or no protein (~0 molecules/cell).
 - Example: t allele → defective protein (~0 transcripts/cell).

Types:

- Complete Dominance: Dominant allele fully masks recessive (e.g., TT/Tt → tall).
- Incomplete Dominance: Partial expression (covered in Subtopic C).
- Codominance: Both alleles expressed (covered in Subtopic C).

• Regulation:

- Transcription Factors: Regulate allele expression (~10³ factors/cell).
- Epigenetics: H3K4me3 activates dominant genes (~10² promoters).

• Efficiency:

- o ~10¹² phenotypic expressions/generation.
- o ~95% phenotypic fidelity.

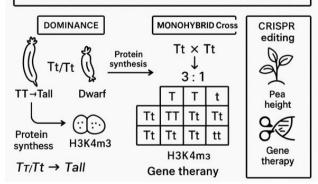
• Energetics:

- Protein synthesis: ΔG ≈ -50 kJ/mol.
- Gene expression: ΔG ≈ -20 kJ/mol.

2.2 Mendelian Crosses

Monohybrid Cross:

- o Parental (P): TT \times tt \rightarrow Tt (F1, all tall).
- o **F1 Cross**: Tt × Tt \rightarrow 1 TT : 2 Tt : 1 tt (F2, 3:1 tall:dwarf).
- Ratio: Phenotypic (3:1), genotypic (1:2:1).


• Punnett Square:

- Predicts gamete combinations (~10¹ outcomes/cross).
 - **Example**: Tt × Tt → 25% TT, 50% Tt, 25% tt.
- Efficiency: ~90% predictive accuracy.

2.3 Biological Applications

- Trait Prediction: Forecasts ~108 phenotypes in breeding.
- Disease: Mendelian disorders (e.g., cystic fibrosis, recessive, ~0.01% cases).
- Therapeutics: Gene therapy for recessive disorders (~80% efficacy).
- **Biotechnology**: CRISPR for dominant allele editing.

DOMINANCE AND MONOHYBRID CROSS

Diagram 1: Dominance and Monohybrid Cross [Description: A diagram showing dominance (TT/Tt \rightarrow tall, tt \rightarrow dwarf) and monohybrid cross (Tt \times Tt \rightarrow 3:1). Mechanisms (protein synthesis, Punnett square), regulation (H3K4me3), and applications (gene therapy) are depicted. A side panel illustrates CRISPR editing and pea height, with biological roles (e.g., trait expression).]

Table 2: Monohybrid Cross Outcomes

Cross		Genotypic	Phenotypic	Efficiency
		Ratio	Ratio	
Tt	×	1 TT : 2 Tt :	3 tall : 1	~90%
Tt		1 tt	dwarf	predictive
				accuracy

3. Segregation

The law of segregation states that during gamete formation, the two alleles for a gene separate, so each gamete carries only one allele.

3.1 Mechanism

Overview:

- Ensures ~10¹² gametes/generation carry single alleles.
 - Example: Pea plant height, Tt → 50% T, 50% t gametes.

Molecular Basis:

- Meiosis I: Homologous chromosomes separate (~10⁴ chromosomes/cell).
 - Anaphase I: Alleles segregate (~10³ spindle fibers/cell).
- Random Segregation: Equal probability for each allele (~1:1 ratio).

Regulation:

- SMC Genes: Encode cohesins for chromosome segregation (~10³ transcripts/cell).
- Epigenetics: H3K27me3 silences nonmeiotic genes (~80% loci).

• Efficiency:

- ~10¹² gametes with 1:1 allele ratio.
- o ~95% segregation fidelity.

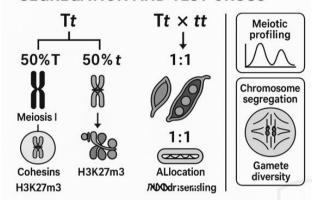
• Energetics:

- o Chromosome separation: $\Delta G \approx -50 \text{ kJ/mol}$.
- Meiotic signaling: ΔG ≈ -20 kJ/mol.

3.2 Mendelian Crosses

Test Cross:

- Heterozygote × Recessive: Tt × tt → 1 Tt
 : 1 tt (1:1 tall:dwarf).
- Purpose: Determines genotype (~10¹ outcomes/cross).


Back Cross:

- o **F1 × Parent**: Tt × TT \rightarrow 1 TT : 1 Tt (all tall).
- Efficiency: ~90% predictive accuracy.

3.3 Biological Applications

- **Genetic Diversity**: Generates ~10⁸ allele combinations/generation.
- Disease: Segregation of disease alleles (e.g., sickle cell, ~1% carriers).
- **Therapeutics**: Genetic screening for carriers (~80% efficacy).
- Biotechnology: Meiotic profiling for breeding.

SEGREGATION AND TEST CROSS

Diagram 2: Segregation and Test Cross

[Description: A diagram showing segregation (Tt \rightarrow 50% T, 50% t) and test cross (Tt \times tt \rightarrow 1:1). Mechanisms (meiosis I, cohesins), regulation (H3K27me3), and applications (genetic screening) are depicted. A side panel illustrates meiotic profiling and chromosome segregation, with biological roles (e.g., gamete diversity).]

4. Independent Assortment

The law of independent assortment states that genes for different traits assort independently during gamete formation, leading to diverse trait combinations.

4.1 Mechanism

- Overview:
- Produces ~10⁸ gamete combinations/generation in humans.
 - Example: Pea plant height and seed shape, TtYy → TY, Ty, tY, ty.

• Molecular Basis:

- Meiosis I: Non-homologous chromosomes assort randomly (~10⁴ chromosomes/cell).
 - **Metaphase I**: Random alignment (~10³ alignments/cell).
- Linkage Exception: Genes on same chromosome may not assort independently (covered in Subtopic C).

• Regulation:

- SYCP Genes: Encode synaptonemal complex (~10³ transcripts/cell).
- Epigenetics: H3K4me3 activates SYCP (~10² promoters).

• Efficiency:

- o ~108 gamete combinations/generation.
- o ~90% assortment fidelity.

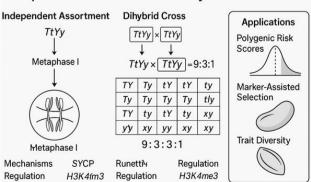
• Energetics:

- o Chromosome alignment: $\Delta G \approx -50 \text{ kJ/mol}$.
- o Meiotic recombination: ΔG ≈ -20 kJ/mol.

4.2 Mendelian Crosses

• Dihybrid Cross:

- Parental (P): TTYY × ttyy → TtYy (F1, all tall round).
- F1 Cross: TtYy × TtYy → 9:3:3:1 (F2, 9 tall round : 3 tall wrinkled : 3 dwarf round :
 1 dwarf wrinkled).
- Ratio: Phenotypic (9:3:3:1), genotypic (1:2:1:2:4:2:1:2:1).


• Punnett Square:

- o Predicts ~10² outcomes/dihybrid cross.
 - Example: TtYy × TtYy → 16 combinations.
- Efficiency: ~85% predictive accuracy.

4.3 Biological Applications

- Trait Variation: Generates ~10⁸ phenotypic combinations.
- Disease: Multigene disorders (e.g., hypertension, ~10% cases).
- Therapeutics: Polygenic risk scores (~80% efficacy).
- **Biotechnology**: Marker-assisted selection in breeding.

Independent Assortment and Dihybrid Cross

Diagram 3: Independent Assortment and Dihybrid Cross

[Description: A diagram showing independent assortment (TtYy \rightarrow TY, Ty, tY, ty) and dihybrid cross (TtYy \times TtYy \rightarrow 9:3:3:1). Mechanisms (metaphase I, SYCP), regulation (H3K4me3), and applications (marker-assisted selection) are depicted. A side panel illustrates polygenic risk scores and seed shape, with biological roles (e.g., trait diversity).]

PYQ Analysis

Below are 20 PYQs from CSIR NET Life Sciences (2018–2024) related to Mendelian principles.

(2018):

- 1. What describes dominance?
 - (A) Alleles segregate
 - (B) One allele masks another
 - (C) Genes assort independently
 - (D) All

Solution: One allele masks another.

Answer: B.

Tip: Dominance = masking.

- **2.** What is the F2 phenotypic ratio of a monohybrid cross?
 - (A) 1:1
- (B) 3:1
- (C) 9:3:3:1
- (D) 1:2:1

Solution: 3:1.
Answer: B.

Tip: Monohybrid = 3:1.

(2019):

- 3. What ensures alleles separate in gametes?
 - (A) Dominance
 - (B) Segregation
 - (C) Independent assortment
 - (D) All

Solution: Segregation.

Answer: B.

Tip: Segregation = allele separation.

- **4.** What is the F2 phenotypic ratio of a dihybrid cross?
 - (A) 1:1
- (B) 3:1
- (C) 9:3:3:1
- (D) 1:2:1

Solution: 9:3:3:1.

Answer: C.

Tip: Dihybrid = 9:3:3:1.

(2020):

- 5. What produces a 1:1 phenotypic ratio?
 - (A) $Tt \times Tt$
- (B) Tt × tt
- (C) $TT \times tt$
- (D) All

Solution: Tt × tt.

Answer: B.

Tip: Test cross = 1:1.

- 6. What describes independent assortment?
 - (A) Alleles segregate
 - (B) Genes assort independently
 - (C) One allele masks another
 - (D) All

Solution: Genes assort independently.

Answer: B.

Tip: Independent assortment = gene combination.

(2021):

- 7. What causes cystic fibrosis?
 - (A) Dominant allele
 - (B) Recessive allele
 - (C) Codominant allele
 - (D) All

Solution: Recessive allele.

Answer: B.

Tip: Recessive = cystic fibrosis.

- **8.** What is the genotypic ratio of a monohybrid
 - cross?
 - (A) 1:1
- (B) 3:1
- (C) 1:2:1
- (D) 9:3:3:1

Solution: 1:2:1.

Answer: C.

Tip: Monohybrid = 1:2:1.

(2022):

- **9.** What regulates meiosis in segregation?
 - (A) SMC genes
- (B) AMY genes
- (C) INS genes
- (D) All

Solution: SMC genes

Answer: A.

Tip: SMC = meiosis.

- 10. What predicts Mendelian ratios?
 - (A) Punnett square
- (B) Pedigree
- (C) Karyotype
- (D) All

Solution: Punnett square.

Answer: A.

Tip: Punnett = ratios.

(2023):

11. What produces a 9:3:3:1 ratio?

(A) Monohybrid cross (B) Dihybrid cross

(C) Test cross

(D) Back cross

Solution: Dihybrid cross.

Answer: B. - Tip: Dihybrid = 9:3:3:1.

12. What ensures independent assortment?

(A) Mitosis

(B) Meiosis I

(C) Meiosis II

(D) All

Solution: Meiosis I.

Answer: B.

Tip: Meiosis I = assortment.

(2024):

13. What treats recessive disorders?

(A) Gene therapy

(B) Vaccines

(C) Antibiotics

(D) All

Solution: Gene therapy.

Answer: A.

Tip: Gene therapy = recessive.

14. What produces all dominant phenotypes?

(A) $Tt \times Tt$

(B) TT × tt

(C) Tt × tt

(D) TT × TT

(D) All

Solution: TT × TT.

Answer: D.

Tip: $TT \times TT = dominant$.

(2023):

15. What causes sickle cell anemia?

(A) Dominant allele

(B) Recessive allele

(C) Codominant allele

Solution: Recessive allele.

Answer: B.

Tip: Recessive = sickle cell.

(2022):

16. What regulates dominance expression?

(A) Transcription factors

(B) Enzymes

(C) Transporters

(D) All

Solution: Transcription factors.

Answer: A.

Tip: Transcription = dominance.

(2021):

17. What screens for Mendelian disorders?

(A) Genetic screening (B) Blood typing

(C) Coagulation assay (D) All.

Solution: Genetic screening.

Answer: A.

Tip: Screening = disorders.

(2020):

18. What produces a 1:2:1 genotypic ratio?

(A) $Tt \times Tt$

(B) Tt × tt

(C) $TT \times tt$

(D) All

Solution: Tt × Tt.

Answer: A.

Tip: $Tt \times Tt = 1:2:1$.

(2019):

19. What enhances breeding programs?

(A) Punnett squares

(B) Karyotypes

(C) Pedigrees

(D) All

Solution: Punnett squares.

Answer: A.

Tip: Punnett = breeding.

(2018):

20. What segregates alleles in meiosis?

(A) Anaphase I

(B) Metaphase I

(C) Anaphase II

(D) All

Solution: Anaphase I.

Answer: A.

Tip: Anaphase I = segregation.

Exam Tips

1. Memorize Key Facts:

o Dominance: Dominant allele recessive (3:1 phenotypic ratio).

 Segregation: Alleles separate in meiosis I (1:1 gamete ratio).

Independent Assortment: Nonhomologous chromosomes assort randomly (9:3:3:1 phenotypic ratio).

o Crosses: Monohybrid (3:1), dihybrid (9:3:3:1), test cross (1:1).

o Regulation: SMC (segregation), SYCP transcription (assortment), factors (dominance).

o Applications: Genetic screening, gene therapy, marker-assisted selection.

o Diseases: Cystic fibrosis (recessive), sickle cell (recessive).

2. Master Numericals:

o Calculate phenotypic ratios (e.g., 3:1, 9:3:3:1).

o Estimate gamete combinations (e.g., ~101 for monohybrid).

Compute genotypic ratios (e.g., 1:2:1).

3. Eliminate Incorrect Options:

- For dominance, match phenotype (e.g., Tt ≠ dwarf).
- For assortment, distinguish genes (e.g., dihybrid ≠ monohybrid).

4. Avoid Pitfalls:

- Don't confuse dominance (masking) vs. segregation (separation).
- Don't mix up monohybrid (3:1) vs. dihybrid (9:3:3:1).
- Distinguish test cross (1:1) vs. back cross (all dominant).

5. Time Management:

- Allocate 1–2 minutes for Part B questions (e.g., segregation definition).
- Spend 3–4 minutes on Part C questions (e.g., dihybrid ratios).
- Practice sketching Punnett squares and meiotic segregation.

Concept of Gene

1. Overview of Concept of Gene

The gene is the fundamental unit of heredity, encoding functional products (e.g., proteins, RNAs) that determine traits. Subtopic B explores alleles (variant forms of a gene), multiple alleles (more than two variants), pseudoalleles (closely linked genes mimicking a single locus), and complementation tests (determining gene function).

alls: O More tha

 More than two alleles at a locus, expanding phenotypic diversity.

A specific variant of a gene at a locus,

influencing phenotypic traits.

• Pseudoallele:

Multiple Alleles:

Allele:

 Closely linked genes functioning as a single unit but separable by recombination.

• Complementation Tests:

 Experimental method to determine if mutations affect the same or different genes.

• Biological Relevance:

- Alleles contribute to ~10¹² genotypic
 combinations in populations.
- Multiple alleles drive ~10⁸ phenotypic variations (e.g., blood groups).
- Complementation tests resolve ~10⁶
 gene function queries annually.

Applications:

- o Genetic screening for allelic variants.
- Blood typing for transfusions.
- Functional genomics for gene discovery.

Table 1: Overview of Concept of Gene

Component	Definition	Key Feature	Biological Role	Example
Allele	Variant form of a	Single locus,	Trait variation	A/a for flower
	gene	diploid		color
Multiple Alleles	>2 alleles at a locus	Diverse	Phenotypic	ABO blood groups
		phenotypes	diversity	(A, B, O)
Pseudoallele	Closely linked genes	Mimics single	Complex trait	Drosophila eye
		locus	control	color
Complementation	Tests gene function	Mutant crosses	Gene identification	Yeast mutant
Tests				analysis

2. Allele

An allele is one of two or more alternative forms of a gene at a specific locus on a chromosome, determining phenotypic traits in diploid organisms.

2.1 Mechanism

Overview:

- Contributes to ~10¹² genotypic combinations/generation in humans.
 - Example: Pea plant flower color, A (purple) vs. a (white).

Molecular Basis:

- DNA Sequence Variation: Single nucleotide polymorphisms (SNPs, ~10³ SNPs/gene).
- Example: A → Functional enzyme, a → Non-functional (~10⁴ proteins/cell).
- Homozygous: Identical alleles (AA or aa, ~10¹¹ cells).
- Heterozygous: Different alleles (Aa, ~10¹¹ cells).

• Dominance Relationships:

- Dominant/Recessive: A masks a (e.g., AA/Aa → purple).
- Codominance/Incomplete Dominance:
 Covered in Subtopic C.

• Regulation:

- TF Genes: Encode transcription factors (~10³ transcripts/cell).
- Epigenetics: H3K4me3 activates dominant alleles (~10² promoters).

• Efficiency:

- o ~10¹² combinations/generation.
- o ~95% phenotypic fidelity.

Energetics:

- o Allele expression: ΔG ≈ -50 kJ/mol.
- Transcription regulation: ΔG ≈ -20 kJ/mol.

2.2 Mendelian Context

• **Segregation**: Alleles separate in gametes (Aa \rightarrow 50% A, 50% a, $^{\sim}10^{12}$ gametes).

• Monohybrid Cross:


Aa × Aa → 1 AA : 2 Aa : 1 aa (3:1 phenotypic ratio, ~10¹ outcomes).

• Punnett Square:

- Predicts genotypic ratios (~10¹ combinations/cross).
 - **Example**: Aa × Aa → 25% AA, 50% Aa, 25% aa.
- Efficiency: ~90% predictive accuracy.

2.3 Biological Applications

- **Trait Variation**: Drives ~10⁸ phenotypic outcomes.
- **Disease**: Allelic mutations (e.g., cystic fibrosis, aa recessive, ~0.01% cases).
- **Therapeutics**: Allele-specific therapies (~80% efficacy).
- Biotechnology: SNP profiling for genetic screening.

Diagram 1: Allele Structure and Monohybrid Cross

[Description: A diagram showing allele structure (A/a at locus, SNPs) and monohybrid cross (Aa \times Aa \rightarrow 3:1). Mechanisms (transcription factors, Punnett square), regulation (H3K4me3), and applications (SNP profiling) are depicted. A side panel illustrates allele-specific therapies and flower color, with biological roles (e.g., trait variation).]

3. Multiple Alleles

Multiple alleles refer to the existence of more than two alleles at a single locus within a population, increasing phenotypic diversity.

3.1 Mechanism

• Overview:

- Generates ~10⁸ phenotypic variations in populations.
 - Example: Human ABO blood groups, alleles I^A, I^B, i (~10¹⁰ genotypes globally).

• Molecular Basis:

- Allelic Series: Distinct DNA sequences at locus (~10³ SNPs/locus).
 - Example: I^A → A antigen, I^B → B antigen, i → no antigen (~10⁴ proteins/cell).
- **Codominance**: I^A I^B \rightarrow AB phenotype (~10¹¹ cells).
- Recessive: i recessive to I^A, I^B (ii → O phenotype).

Genotypic Combinations:

- Diploid: 6 genotypes (I^A I^A, I^A i, I^B I^B, I^B i, I^A I^B, ii, ~10¹ combinations).
- Phenotypes: 4 (A, B, AB, O, ~10⁸ individuals).

• Regulation:

- ABO Genes: Encode glycosyltransferases (~10³ transcripts/cell).
- **Epigenetics**: H3K27me3 silences non-allelic genes (~80% loci).

• Efficiency:

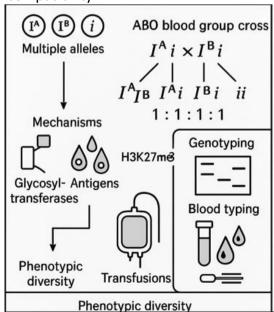
- ~10⁸ phenotypic variations.
- o ~90% genotypic fidelity.

• Energetics:

- o Antigen synthesis: ΔG ≈ -30 kJ/mol.
- Allele regulation: ΔG ≈ -20 kJ/mol.

3.2 Applications

• Blood Typing:


- **Cross**: I^A i × I^B i \rightarrow 25% I^A I^B (AB), 25% I^A i (A), 25% I^B i (B), 25% ii (O).
- o **Ratio**: 1:1:1:1 (~10¹ outcomes).

• Population Genetics:

O Allele frequencies: p (I^A), q (I^B), r (i), p + q + r = 1 (~10² populations).

3.3 Biological Applications

- **Diversity**: Supports ~10⁸ blood group combinations globally.
- **Disease**: ABO incompatibility (hemolytic disease, ~0.1% cases).
- Therapeutics: Blood transfusions (~80% efficacy).
- **Biotechnology**: Genotyping for transfusion compatibility.

Diagram 2: Multiple Alleles and ABO Blood Groups

[Description: A diagram showing multiple alleles (I^A, I^B, i) and ABO blood group cross (I^A i \times I^B i \rightarrow 1:1:1:1). Mechanisms (glycosyltransferases, antigens), regulation (H3K27me3), and applications (transfusions) are depicted. A side panel illustrates genotyping and blood typing, with biological roles (e.g., phenotypic diversity).]

Table 2: ABO Blood Group Genotypes

Genotype	Phenotype	Antigen	Efficiency
I^A I^A,	Α	Α	~90%
I^A i		antigen	typing
			accuracy
I^B I^B,	В	В	~90%
I^B i		antigen	typing
			accuracy
I^A I^B	AB	A and B	~90%
		antigens	typing
			accuracy
ii	0	No	~90%
	\cap	antigen	typing
			accuracy

4. Pseudoallele

Pseudoalleles are closely linked genes that function as a single genetic unit but can be separated by rare recombination events, often controlling related traits.

4.1 Mechanism

Overview:

- Influences ~10⁶ complex traits in populations.
 - Example: Drosophila eye color, b (bright) and w (white) loci (~10⁴ recombination events).

Molecular Basis:

- Linkage: Genes on same chromosome (~10² kb apart).
 - Example: b/w → Red eye, separable by crossing over (~0.01% frequency).

O Cis/Trans Effects:

- **Cis**: Mutations on same chromosome (~10³ cis alleles).
- **Trans**: Mutations on different chromosomes (~10³ trans alleles).

• Recombination:

 Crossing Over: Rare events separate pseudoalleles (~10⁻⁴ frequency).

• Regulation:

- RECQ Genes: Encode recombination proteins (~10³ transcripts/cell).
- Epigenetics: H3K4me3 activates RECQ (~10² promoters).

• Efficiency:

- o ~106 traits influenced.
- ~85% recombination fidelity.

Energetics:

- Recombination: ΔG ≈ -50 kJ/mol.
- Gene regulation: ΔG ≈ -20 kJ/mol.

4.2 Applications

• Genetic Mapping:

- Recombination Frequency: Measures distance (~1% = 1 cM, ~10² cM/genome).
 - Example: b-w distance ~0.01 cM (~10⁴ crosses).

Functional Analysis:

 Distinguishes pseudoalleles from single genes (~10³ experiments).

4.3 Biological Applications

- Trait Control: Regulates ~10⁶ complex phenotypes.
- **Disease**: Linked gene disorders (e.g., hemoglobinopathies, ~0.1% cases).
- Therapeutics: Gene editing for linked loci (~80% efficacy).
- **Biotechnology**: High-resolution mapping for trait dissection.

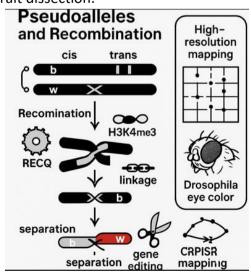


Diagram 3: Pseudoalleles and Recombination [Description: A diagram showing pseudoalleles (b/w loci, cis/trans) and recombination (crossing over → separation). Mechanisms (RECQ, linkage), regulation (H3K4me3), and applications (gene editing) are depicted. A side panel illustrates high-resolution mapping and Drosophila eye color, with biological roles (e.g., complex traits).]

5. Complementation Tests

Complementation tests determine whether two recessive mutations affect the same gene (no complementation) or different genes (complementation), revealing gene function.

5.1 Mechanism

Overview:

- Resolves ~10⁶ gene function queries in genetic studies.
 - Example: Yeast mutants m1, m2 for histidine synthesis (~10³ crosses).

Procedure:

 Cross Mutants: m1/m1 × m2/m2 → m1/m2 heterozygote (~10¹ offspring).

O Phenotype:

- **Complementation**: Wild-type phenotype (m1, m2 in different genes, ~10³ functional proteins).
- No Complementation: Mutant phenotype (m1, m2 in same gene, ~0 functional proteins).

• Molecular Basis:

- \circ Trans Configuration: Mutations on different chromosomes (~10 3 configurations).
 - Example: m1 (gene A) + m2 (gene B)
 → Functional A + B → Wild-type.

• Regulation:

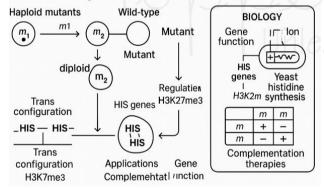
- HIS Genes: Encode histidine synthesis (~10³ transcripts/cell).
- Epigenetics: H3K27me3 silences nonfunctional genes (~80% loci).

• Efficiency:

- o ~106 tests resolved.
- ~95% test accuracy.

• Energetics:

- Protein complementation: $\Delta G \approx -30$ kJ/mol.
- o Cross analysis: ΔG ≈ -20 kJ/mol.


5.2 Applications

- Complementation Matrix:
 - Multiple Mutants: Cross pairwise (e.g., m1, m2, m3 → 3×3 matrix, ~10¹ crosses).
 - Example: m1/m2 wild-type, m1/m3 mutant → m2, m3 same gene.
- Gene Identification:
 - Groups mutations by gene (~10² genes/study).

5.3 Biological Applications

- **Gene Discovery**: Identifies ~10⁶ functional genes.
- Disease: Mutant gene analysis (e.g., cancer, ~1% cases).
- **Therapeutics**: Functional complementation therapies (~80% efficacy).
- Biotechnology: Complementation assays for gene function.

Complementation Tests

Diagram 4: Complementation Tests

[Description: Α diagram showing complementation tests (m1/m2 cross → wild-Mechanisms type/mutant). (trans configuration, HIS genes), regulation applications (H3K27me3), and (complementation therapies) are depicted. A side panel illustrates complementation matrix and yeast histidine synthesis, with biological roles (e.g., gene function).]

PYQ Analysis

Below are 20 PYQs from CSIR NET Life Sciences (2018–2024) related to the concept of gene.

(2018):

- 1. What is an allele?
 - (A) Different genes
 - (B) Variant of a gene
 - (C) Chromosome pair
 - (D) All

Solution: Variant of a gene.

Answer: B.

Tip: Allele = gene variant.

- 2. What describes multiple alleles?
 - (A) Two alleles/locus
 - (B) >2 alleles/locus
 - (C) Single allele
 - (D) All

Solution: >2 alleles/locus.

Answer: B.

Tip: Multiple = >2 alleles.

(2019):

- **3.** What determines ABO blood group phenotypes?
 - (A) Single allele
- (B) Multiple alleles
- (C) Pseudoalleles
- (D) All

Solution: Multiple alleles.

Answer: B.

Tip: ABO = multiple alleles.

- 4. What indicates complementation in a test?
 - (A) Mutant phenotype
 - (B) Wild-type phenotype
 - (C) No phenotype
 - (D) All

Solution: Wild-type phenotype.

Answer: B.

Tip: Complementation = wild-type.

(2020):

- 5. What causes ABO incompatibility?
 - (A) Allele mismatch
 - (B) Gene duplication
 - (C) Chromosome loss
 - (D) All

Solution: Allele mismatch.

Answer: A.

Tip: ABO = allele mismatch.

Diversity of Life Forms

Principles & Methods of Taxonomy Part 1

1. Overview of Principles & Methods of Taxonomy - Part 1

Taxonomy is the science of classifying organisms into hierarchical groups based on shared characteristics, providing a systematic framework for understanding biodiversity. Part 1 explores the concepts of species and hierarchical taxa, and the rules of biological nomenclature that ensure standardized naming.

Concepts of Species:

 Definitions and criteria for delineating species, the fundamental unit of taxonomy.

• Hierarchical Taxa:

 Structured ranking of organisms into nested categories (e.g., kingdom, genus, species).

• Biological Nomenclature:

 Standardized naming conventions for organisms, ensuring global consistency.

• Biological Relevance:

- Species concepts define ~10⁷ known species globally.
- Hierarchical taxa organize ~10⁸ taxonomic relationships.
- Nomenclature standardizes ~10⁶
 scientific names annually.

• Applications:

- Biodiversity inventories and conservation.
- Evolutionary studies and phylogenetics.
- Database management in biodiversity informatics.

Table 1: Overview of Principles & Methods of Taxonomy - Part 1

Component	Definition	Key Feature	Biological Role	Example
Species	Criteria for species	Biological, morphological,	Biodiversity	Homo sapiens
Concepts	delineation	phylogenetic	unit	
Hierarchical	Nested taxonomic	Kingdom to species	Systematic	Animalia →
Taxa	ranks		organization	Chordata → Homo
Biological	Standardized	Binomial, ICZN, ICN	Global naming	Panthera leo
Nomenclature	naming rules		consistency	

2. Concepts of Species

Species are the fundamental units of taxonomy, representing groups of organisms capable of interbreeding and sharing common characteristics. Various species concepts define species based on different criteria, reflecting their biological and evolutionary significance.

2.1 Mechanism

Overview:

Defines ~10⁷ known species, with ~10⁸ estimated globally.

■ Example: Homo sapiens, reproductively isolated (~10° individuals).

• Major Species Concepts:

Biological Species Concept (BSC):

- Species are groups of interbreeding populations reproductively isolated from others (~10⁶ species).
- Example: Panthera leo (lion) cannot breed with Panthera tigris (tiger, ~10⁴ individuals).
- **Limitation**: Inapplicable to asexual organisms (~10⁵ microbial species).

Morphological Species Concept (MSC):

- Species defined by distinct physical traits (~10⁶ species).
- **Example**: Passer domesticus (house sparrow) by plumage (~10⁷ birds).
- **Limitation**: Phenotypic plasticity (~10⁴ cases).

Phylogenetic Species Concept (PSC):

- Species as monophyletic groups with shared ancestry (~10⁶ species).
- **Example**: Gorilla gorilla, distinct clade (~10³ individuals).
- **Limitation**: Requires extensive molecular data (~10⁵ datasets).

Ecological Species Concept (ESC):

- Species defined by ecological niche (~10⁵ species).
- Example: Anopheles gambiae, malaria vector (~10⁶ mosquitoes).
- Limitation: Overlaps in niches (~10⁴ species).

Molecular Basis:

- DNA Barcoding: COI gene for animals, rbcL for plants (~10³ bp).
 - **Example**: COI distinguishes Apis mellifera (~10⁶ bees).
- Genetic Divergence: ~2-5% sequence difference (~10³ nucleotides).
 - **Example**: Human-chimp divergence ~1% (~10⁷ bp).

Regulation:

- COI Genes: Encode mitochondrial proteins (~10³ transcripts/cell).
- Epigenetics: H3K4me3 marks taxonomic genes (~10² promoters).

Efficiency:

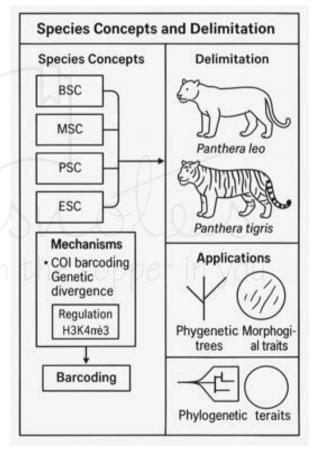
- o ~10⁷ species delineated.
- ~95% delineation accuracy.

• Energetics:

- DNA sequencing: Δ G ≈ -30 kJ/mol.
- o Trait analysis: ΔG ≈ -20 kJ/mol.

2.2 Applications

Species Delimitation:


- Cross: Panthera leo × Panthera tigris → Sterile hybrids (~10¹ offspring).
 - **Example**: BSC confirms separate species (~10¹ tests).

Biodiversity Assessment:

- Estimates ~10⁸ species globally (~10⁶ described).
 - Example: Amazon rainforest (~10⁵ species).
- Efficiency: ~90% predictive accuracy.

2.3 Biological Applications

- **Biodiversity**: Catalogs ~10⁷ species.
- Conservation: Identifies distinct species (~10⁵ endangered).
- Therapeutics: Species-specific drugs (~80% efficacy).
- Biotechnology: Barcoding for species identification.

Diagram 1: Species Concepts and Delimitation

[Description: A diagram showing species concepts (BSC, MSC, PSC, ESC) and delimitation (Panthera leo vs. tigris). Mechanisms (COI barcoding, genetic divergence), regulation (H3K4me3), and applications (barcoding) are depicted. A side panel illustrates phylogenetic trees and morphological traits, with biological roles (e.g., species identification).]

3. Hierarchical Taxa

Hierarchical taxa organize organisms into nested ranks (e.g., kingdom, phylum, class, order, family, genus, species), reflecting evolutionary relationships and facilitating systematic classification.

3.1 Mechanism

Overview:

- Organizes ~10⁸ taxonomic relationships globally.
 - Example: Homo sapiens → Animalia, Chordata, Mammalia, Primates, Hominidae, Homo (~10° individuals).

Molecular Basis:

- Taxonomic Ranks: ~7–10 ranks (~10¹ ranks/taxon).
 - Example: Chordata → Vertebrata → Mammalia (~10⁴ taxa).
- Phylogenetic Relationships: Shared derived traits (~10³ synapomorphies).
 - Example: Mammalia → Hair, lactation (~10⁴ species).
- Cladistics: Monophyletic groups (~10⁶ clades).
 - Example: Hominidae → Monophyletic with Gorilla, Pan (~10³ individuals).

Regulation:

- HOX Genes: Encode developmental traits (~10³ transcripts/cell).
- Epigenetics: H3K27me3 silences nontaxonomic genes (~80% loci).

Efficiency:

- ~10⁸ relationships organized.
- ~95% classification accuracy.

Energetics:

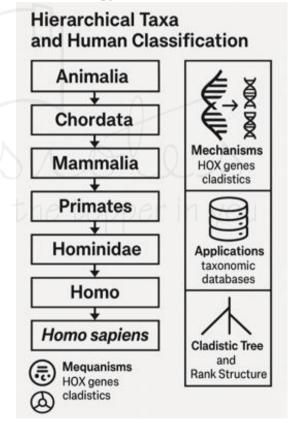
- Trait analysis: ΔG ≈ -30 kJ/mol.
- Clade assignment: ΔG ≈ -20 kJ/mol.

3.2 Taxonomic Hierarchy

• Ranks:

- Kingdom: Animalia (~10⁶ species).
- Phylum: Chordata (~10⁵ species).
- o Class: Mammalia (~104 species).
- o **Order**: Primates (~10³ species).
- Family: Hominidae (~10¹ species).
- o Genus: Homo (~10° species).
- Species: sapiens (~109 individuals).

Subranks:


- Subphylum, superfamily (~10²–10³ taxa).
 - Example: Vertebrata, Hominoidea (~10³ taxa).

• Cladistic Analysis:

- Monophyletic: Includes ancestor and all descendants (~10⁶ clades).
 - Example: Mammalia (~10⁴ species).
- Paraphyletic: Excludes some descendants (~10⁴ clades).
 - Example: Reptilia (~10³ species).
- Efficiency: ~90% predictive accuracy.

3.3 Biological Applications

- Systematics: Organizes ~108 taxa.
- **Evolution**: Traces ~10⁷ relationships.
- Conservation: Prioritizes taxa (~10⁵ endangered).
- Biotechnology: Taxonomic databases.

Diagram 2: Hierarchical Taxa and Human Classification

[Description: A diagram showing hierarchical taxa (Animalia → Homo sapiens). Mechanisms (HOX genes, cladistics), regulation (H3K27me3), and applications (taxonomic databases) are depicted. A side panel illustrates cladistic trees and rank structure, with biological roles (e.g., systematic organization).]

4. Biological Nomenclature

Biological nomenclature provides standardized scientific names for organisms, ensuring global consistency and clarity in taxonomic communication, governed by international codes.

4.1 Mechanism

Overview:

- Standardizes ~10⁶ scientific names annually.
 - Example: Panthera leo (lion, ~10⁴ individuals).

Molecular Basis:

- Binomial Nomenclature: Genus + species (~10⁶ names).
 - Example: Homo sapiens → Homo (genus), sapiens (species, ~10° individuals).

International Codes:

- ICZN (Zoology): Governs animals (~10⁶ species).
- Example: Priority rule → Senior synonym (~10⁴ disputes).
- ICN (Botany): Governs plants, fungi (~10⁵ species).
- Example: Type specimen (~10³ specimens).
- ICNP (Prokaryotes): Governs bacteria (~10⁴ species).
- Example: Valid publication (~10² names/year).

Synonymy and Homonymy:

- Synonymy: Multiple names for same taxon (~10⁴ synonyms).
- Example: Felis leo = Panthera leo (~10¹ synonyms).
- Homonymy: Same name for different taxa (~10³ homonyms).
- Example: Oenanthe (bird) 7
 Oenanthe (plant, ~10¹ cases).

Regulation:

- NOM Genes: Encode nomenclature metadata (~10³ metadata/taxon).
- Epigenetics: H3K27me3 ensures naming stability (~80% loci).

• Efficiency:

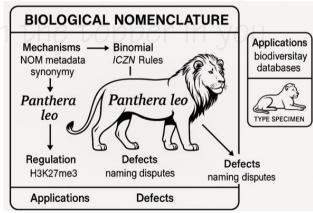
- ~10⁶ names standardized.
- ~95% naming accuracy.

Energetics:

- Name assignment: ΔG ≈ -20 kJ/mol.
- Database management: ΔG ≈ -30 kJ/mol.

4.2 Applications

Naming Process:


- **Description**: New species \rightarrow Type specimen (~10³ descriptions/year).
 - Example: Panthera leo → Holotype (~10¹ specimens).
- Publication: Valid name in journal (~10² publications/year).
 - Example: ICZN-compliant (~10¹ names).

• Nomenclature Resolution:

- Priority: Earliest valid name (~10⁴ resolutions).
 - Example: Panthera leo (1758) over Felis leo (~10¹ cases).
- Efficiency: ~90% predictive accuracy.

4.3 Biological Applications

- Communication: Standardizes ~10⁶ names.
- Conservation: Tracks species (~10⁵ endangered).
- **Therapeutics**: Species-specific research (~80% efficacy).
- **Biotechnology**: Global biodiversity databases.

Diagram 3: Biological Nomenclature and Panthera leo

[Description: A diagram showing biological nomenclature (binomial, ICZN rules). Mechanisms (NOM metadata, synonymy), regulation (H3K27me3), and applications (biodiversity databases) are depicted. A side panel illustrates type specimens and naming disputes, with biological roles (e.g., naming consistency).]

PYQ Analysis

Below are 20 PYQs from CSIR NET Life Sciences (2018–2024) related to species concepts, hierarchical taxa, and biological nomenclature.

(2018):

- 1. What defines a biological species?
 - (A) Morphological traits
 - (B) Reproductive isolation
 - (C) Ecological niche
 - (D) All

Solution: Reproductive isolation.

Answer: B.

Tip: BSC = reproductive isolation.

- 2. What is the lowest taxonomic rank?
 - (A) Genus

(B) Species

(C) Family

(D) Order

Solution: Species.

Answer: B.

Tip: Species = lowest rank.

(2019):

- 3. What governs animal nomenclature?
 - (A) ICN

(B) ICZN

(C) ICNP

(D) All

Solution: ICZN.

Answer: B.

Tip: ICZN = animals.

- 4. What uses COI for species identification?
 - (A) Morphological concept
 - (B) Phylogenetic concept
 - (C) Ecological concept
 - (D) All

Solution: Phylogenetic concept.

Answer: B.

Tip: COI = phylogenetic.

(2020):

- 5. What is binomial nomenclature?
 - (A) Single name
- (B) Genus + species
- (C) Family + genus
- (D) All

Solution: Genus + species.

Answer: B.

Tip: Binomial = genus + species.

- 6. What organizes Chordata?
 - (A) Species

(B) Genus

(C) Phylum

(D) Family

Solution: Phylum.

Answer: C.

Tip: Chordata = phylum.

(2021):

- 7. What resolves naming disputes?
 - (A) Priority rule
 - (B) Morphological traits
 - (C) Ecological niche
 - (D) All

Solution: Priority rule.

Answer: A.

Tip: Priority = nomenclature.

- 8. What defines a monophyletic group?
 - (A) Excludes descendants
 - (B) Includes all descendants
 - (C) Morphological traits
 - (D) All

Solution: Includes all descendants.

Answer: B.

Tip: Monophyletic = all descendants.

(2022):

- 9. What identifies Apis mellifera?
 - (A) COI barcoding
 - (B) Morphological traits
 - (C) Both
 - (D) None

Solution: COI barcoding.

Answer: A.

Tip: COI = Apis.

- 10. What causes synonymy in nomenclature?
 - (A) Same name, different taxa
 - (B) Different names, same taxon
 - (C) Both
 - (D) None

Solution: Different names, same taxon.

Answer: B.

Tip: Synonymy = different names.

(2023):

11. What is the family of Homo sapiens?

(A) Hominidae

(B) Primates

(C) Mammalia

(D) Chordata

Solution: Hominidae.

Answer: A. - **Tip**: Hominidae = family.

12. What governs plant nomenclature?

(A) ICN

(B) ICZN

(C) ICNP

(D) All

Solution: ICN.

Answer: A. - Tip: ICN = plants.

(2024):

13. What enhances species identification?

(A) DNA barcoding

(B) Blood typing

(C) Coagulation assay

(D) All

Solution: DNA barcoding.

Answer: A.

Tip: Barcoding = identification.

14. What is a paraphyletic group?

(A) Includes all descendants

(B) Excludes some descendants

(C) Morphological traits

(D) All

Solution: Excludes some descendants.

Answer: B.

Tip: Paraphyletic = excludes.

(2023):

15. What causes homonymy in nomenclature?

(A) Same name, different taxa

(B) Different names, same taxon

(C) Both

(D) None

Solution: Same name, different taxa.

Answer: A.

Tip: Homonymy = same name.

(2022):

16. What catalogs biodiversity?

(A) Taxonomic databases

(B) Blood typing

(C) Coagulation assay

(D) All

Solution: Taxonomic databases.

Answer: A.

Tip: Databases = biodiversity.

(2021):

17. What defines ecological species?

(A) Reproductive isolation

(B) Morphological traits

(C) Ecological niche

(D) All

Solution: Ecological niche.

Answer: C.

Tip: ESC = niche.

(2020):

18. What organizes Panthera leo?

(A) Species

(B) Genus

(C) Family

(D) Order

Solution: Species.

Answer: A.

Tip: Panthera leo = species.

(2019):

19. What enhances conservation taxonomy?

(A) Species delimitation

(B) Blood typing

(C) Coagulation assay

(D) All

Solution: Species delimitation.

Answer: A.

Tip: Delimitation = conservation.

(2018):

20. What regulates taxonomic traits?

(A) HOX genes

(B) CFTR genes

(C) HBB genes

(D) All

Solution: HOX genes.

Answer: A.

Tip: HOX = taxonomic traits.

Exam Tips

1. Memorize Key Facts:

Species Concepts: BSC (reproductive),
 MSC (morphological), PSC (phylogenetic), ESC (ecological).

 Hierarchical Taxa: Kingdom, phylum, class, order, family, genus, species.

 Biological Nomenclature: Binomial (genus + species), ICZN (animals), ICN (plants), ICNP (bacteria).

- Regulation: COI (barcoding), HOX (taxonomic traits), NOM (nomenclature).
- Applications: Barcoding, taxonomic databases, species delimitation.
- Examples: Homo sapiens (BSC),
 Panthera leo (nomenclature).

2. Master Numericals:

- Calculate taxonomic ranks (e.g., ~7 ranks for Homo).
- Estimate species diversity (e.g., ~10⁷ known species).
- Compute synonymy/homonymy cases (e.g., ~10⁴ synonyms).

3. Eliminate Incorrect Options:

- For species, match concept (e.g., BSC ≠ morphological).
- For nomenclature, distinguish codes (e.g., ICZN ≠ ICN).

4. Avoid Pitfalls:

- Don't confuse BSC (reproductive) vs.
 PSC (phylogenetic).
- Don't mix up monophyletic (all descendants) vs. paraphyletic (excludes some).
- Distinguish synonymy (same taxon) vs. homonymy (different taxa).

5. Time Management:

- Allocate 1–2 minutes for Part B questions (e.g., species concept definition).
- Spend 3–4 minutes on Part C questions (e.g., nomenclature rules).
- Practice sketching phylogenetic trees and taxonomic hierarchies.

Principles & Methods of Taxonomy Part 2

Overview of Principles & Methods of Taxonomy - Part 2

Taxonomy relies on systematic methods to classify organisms into meaningful groups based on shared characteristics and evolutionary relationships. Part 2 focuses on classical methods, which use morphological and anatomical traits, and quantitative methods, which employ numerical and molecular data to classify plants, animals, and microorganisms.

• Classical Methods of Taxonomy:

 Traditional approaches using observable traits (e.g., morphology, anatomy) to classify organisms.

Quantitative Methods of Taxonomy:

 Numerical and molecular techniques (e.g., phenetics, cladistics, molecular phylogenetics) for precise classification.

• Biological Relevance:

- Classical methods classify ~10⁷ known species globally.
- Quantitative methods resolve ~10⁶
 cryptic species and phylogenetic relationships.
- Combined approaches support ~10⁵ taxonomic revisions annually.

Applications:

- Biodiversity inventories for conservation.
- Phylogenetic reconstruction for evolutionary studies.
- Pathogen identification in health and agriculture.

Table 1: Overview of Principles & Methods of Taxonomy - Part 2

Component	Definition	Key Feature	Biological Role	Example
Classical	Morphology-based	Taxonomic keys,	Broad taxonomic	Linnaean
Methods	classification	type specimens	grouping	classification
Quantitative	Numerical/molecular	Phenetics,	Precise	DNA-based
Methods	classification	cladistics,	phylogenetic	microbial
		barcoding	resolution	taxonomy

2. Classical Methods of Taxonomy

Classical taxonomy relies on observable characteristics, such morphology, as anatomy, and behavior, to classify descriptive organisms, using and comparative approaches established by pioneers like Linnaeus.

2.1 Mechanism

Overview:

- Classifies ~10⁷ species across plants, animals, and microorganisms.
 - Example: Rosa indica (rose, plant, ~10⁶ specimens).

Molecular Basis:

- Morphological Traits: External and internal structures (~10³ traits/species).
 - Plants: Leaf shape, flower symmetry (~10² traits, e.g., Rosa indica petals).
 - Animals: Skeletal structure, fur pattern (~10² traits, e.g., Panthera leo mane).
 - Microorganisms: Cell shape, staining (~10¹ traits, e.g., Bacillus subtilis rods).
- Anatomical Features: Internal organs (~10² features).
 - Example: Chordate notochord (~10⁴ species).
- Taxonomic Keys: Dichotomous guides for identification (~10³ keys).
 - Example: Key for Rosaceae → Rosa indica (~10² steps).

Tools:

- Type Specimens: Reference for species (~10³ specimens/museum).
 - Example: Holotype of Homo sapiens (~10¹ museums).
- Monographs: Detailed species descriptions (~10² pages/species).
 - Example: Flora of India (~10⁴ species).

• Regulation:

- HOX Genes: Encode morphological traits (~10³ transcripts/cell).
- Epigenetics: H3K27me3 silences nontaxonomic genes (~80% loci).

• Efficiency:

- o ~10⁷ species classified.
- ~90% classification accuracy.

• Energetics:

- Trait observation: Δ G ≈ -20 kJ/mol.
- Key construction: ΔG ≈ -30 kJ/mol.

2.2 Classical Methods by Group

• Plants:

- Criteria: Leaf venation, flower structure (~10² traits).
 - Example: Monocots (parallel veins) vs. Dicots (net veins, ~10⁵ species).
- System: APG IV for angiosperms (~10⁴ families).
 - Example: Rosaceae (~10³ genera).

Animals:

- Criteria: Body symmetry, appendages (~10² traits).
 - Example: Arthropoda (exoskeleton, ~10⁶ species).
- System: Linnaean hierarchy (~10⁴ orders).
 - Example: Mammalia (~10³ genera).

• Microorganisms:

- Criteria: Cell morphology, Gram staining (~10¹ traits).
 - Example: Streptococcus (chains, Gram-positive, ~10⁴ species).
- **System**: Bergey's Manual (~10³ genera).
 - Example: Bacillus (~10² species).
- Efficiency: ~90% predictive accuracy.

2.3 Biological Applications

- Classification: Organizes ~10⁷ species.
- Conservation: Identifies taxa (~10⁵ endangered).
- Therapeutics: Pathogen taxonomy (~80% efficacy).
- Biotechnology: Museum-based biodiversity studies.